Nat.ML
changeset 0 7949f97df77a
child 2 befa4e9f7c90
equal deleted inserted replaced
-1:000000000000 0:7949f97df77a
       
     1 (*  Title: 	HOL/nat
       
     2     ID:         $Id$
       
     3     Author: 	Tobias Nipkow, Cambridge University Computer Laboratory
       
     4     Copyright   1991  University of Cambridge
       
     5 
       
     6 For nat.thy.  Type nat is defined as a set (Nat) over the type ind.
       
     7 *)
       
     8 
       
     9 open Nat;
       
    10 
       
    11 goal Nat.thy "mono(%X. {Zero_Rep} Un (Suc_Rep``X))";
       
    12 by (REPEAT (ares_tac [monoI, subset_refl, image_mono, Un_mono] 1));
       
    13 val Nat_fun_mono = result();
       
    14 
       
    15 val Nat_unfold = Nat_fun_mono RS (Nat_def RS def_lfp_Tarski);
       
    16 
       
    17 (* Zero is a natural number -- this also justifies the type definition*)
       
    18 goal Nat.thy "Zero_Rep: Nat";
       
    19 by (rtac (Nat_unfold RS ssubst) 1);
       
    20 by (rtac (singletonI RS UnI1) 1);
       
    21 val Zero_RepI = result();
       
    22 
       
    23 val prems = goal Nat.thy "i: Nat ==> Suc_Rep(i) : Nat";
       
    24 by (rtac (Nat_unfold RS ssubst) 1);
       
    25 by (rtac (imageI RS UnI2) 1);
       
    26 by (resolve_tac prems 1);
       
    27 val Suc_RepI = result();
       
    28 
       
    29 (*** Induction ***)
       
    30 
       
    31 val major::prems = goal Nat.thy
       
    32     "[| i: Nat;  P(Zero_Rep);   \
       
    33 \       !!j. [| j: Nat; P(j) |] ==> P(Suc_Rep(j)) |]  ==> P(i)";
       
    34 by (rtac (major RS (Nat_def RS def_induct)) 1);
       
    35 by (rtac Nat_fun_mono 1);
       
    36 by (fast_tac (set_cs addIs prems) 1);
       
    37 val Nat_induct = result();
       
    38 
       
    39 val prems = goalw Nat.thy [Zero_def,Suc_def]
       
    40     "[| P(0);   \
       
    41 \       !!k. P(k) ==> P(Suc(k)) |]  ==> P(n)";
       
    42 by (rtac (Rep_Nat_inverse RS subst) 1);   (*types force good instantiation*)
       
    43 by (rtac (Rep_Nat RS Nat_induct) 1);
       
    44 by (REPEAT (ares_tac prems 1
       
    45      ORELSE eresolve_tac [Abs_Nat_inverse RS subst] 1));
       
    46 val nat_induct = result();
       
    47 
       
    48 (*Perform induction on n. *)
       
    49 fun nat_ind_tac a i = 
       
    50     EVERY [res_inst_tac [("n",a)] nat_induct i,
       
    51 	   rename_last_tac a ["1"] (i+1)];
       
    52 
       
    53 (*A special form of induction for reasoning about m<n and m-n*)
       
    54 val prems = goal Nat.thy
       
    55     "[| !!x. P(x,0);  \
       
    56 \       !!y. P(0,Suc(y));  \
       
    57 \       !!x y. [| P(x,y) |] ==> P(Suc(x),Suc(y))  \
       
    58 \    |] ==> P(m,n)";
       
    59 by (res_inst_tac [("x","m")] spec 1);
       
    60 by (nat_ind_tac "n" 1);
       
    61 by (rtac allI 2);
       
    62 by (nat_ind_tac "x" 2);
       
    63 by (REPEAT (ares_tac (prems@[allI]) 1 ORELSE etac spec 1));
       
    64 val diff_induct = result();
       
    65 
       
    66 (*Case analysis on the natural numbers*)
       
    67 val prems = goal Nat.thy 
       
    68     "[| n=0 ==> P;  !!x. n = Suc(x) ==> P |] ==> P";
       
    69 by (subgoal_tac "n=0 | (EX x. n = Suc(x))" 1);
       
    70 by (fast_tac (HOL_cs addSEs prems) 1);
       
    71 by (nat_ind_tac "n" 1);
       
    72 by (rtac (refl RS disjI1) 1);
       
    73 by (fast_tac HOL_cs 1);
       
    74 val natE = result();
       
    75 
       
    76 (*** Isomorphisms: Abs_Nat and Rep_Nat ***)
       
    77 
       
    78 (*We can't take these properties as axioms, or take Abs_Nat==Inv(Rep_Nat),
       
    79   since we assume the isomorphism equations will one day be given by Isabelle*)
       
    80 
       
    81 goal Nat.thy "inj(Rep_Nat)";
       
    82 by (rtac inj_inverseI 1);
       
    83 by (rtac Rep_Nat_inverse 1);
       
    84 val inj_Rep_Nat = result();
       
    85 
       
    86 goal Nat.thy "inj_onto(Abs_Nat,Nat)";
       
    87 by (rtac inj_onto_inverseI 1);
       
    88 by (etac Abs_Nat_inverse 1);
       
    89 val inj_onto_Abs_Nat = result();
       
    90 
       
    91 (*** Distinctness of constructors ***)
       
    92 
       
    93 goalw Nat.thy [Zero_def,Suc_def] "~ Suc(m)=0";
       
    94 by (rtac (inj_onto_Abs_Nat RS inj_onto_contraD) 1);
       
    95 by (rtac Suc_Rep_not_Zero_Rep 1);
       
    96 by (REPEAT (resolve_tac [Rep_Nat, Suc_RepI, Zero_RepI] 1));
       
    97 val Suc_not_Zero = result();
       
    98 
       
    99 val Zero_not_Suc = standard (Suc_not_Zero RS not_sym);
       
   100 
       
   101 val Suc_neq_Zero = standard (Suc_not_Zero RS notE);
       
   102 val Zero_neq_Suc = sym RS Suc_neq_Zero;
       
   103 
       
   104 (** Injectiveness of Suc **)
       
   105 
       
   106 goalw Nat.thy [Suc_def] "inj(Suc)";
       
   107 by (rtac injI 1);
       
   108 by (dtac (inj_onto_Abs_Nat RS inj_ontoD) 1);
       
   109 by (REPEAT (resolve_tac [Rep_Nat, Suc_RepI] 1));
       
   110 by (dtac (inj_Suc_Rep RS injD) 1);
       
   111 by (etac (inj_Rep_Nat RS injD) 1);
       
   112 val inj_Suc = result();
       
   113 
       
   114 val Suc_inject = inj_Suc RS injD;;
       
   115 
       
   116 goal Nat.thy "(Suc(m)=Suc(n)) = (m=n)";
       
   117 by (EVERY1 [rtac iffI, etac Suc_inject, etac arg_cong]); 
       
   118 val Suc_Suc_eq = result();
       
   119 
       
   120 goal Nat.thy "~ n=Suc(n)";
       
   121 by (nat_ind_tac "n" 1);
       
   122 by (ALLGOALS(asm_simp_tac (HOL_ss addsimps [Zero_not_Suc,Suc_Suc_eq])));
       
   123 val n_not_Suc_n = result();
       
   124 
       
   125 (*** nat_case -- the selection operator for nat ***)
       
   126 
       
   127 goalw Nat.thy [nat_case_def] "nat_case(0, a, f) = a";
       
   128 by (fast_tac (set_cs addIs [select_equality] addEs [Zero_neq_Suc]) 1);
       
   129 val nat_case_0 = result();
       
   130 
       
   131 goalw Nat.thy [nat_case_def] "nat_case(Suc(k), a, f) = f(k)";
       
   132 by (fast_tac (set_cs addIs [select_equality] 
       
   133 	               addEs [make_elim Suc_inject, Suc_neq_Zero]) 1);
       
   134 val nat_case_Suc = result();
       
   135 
       
   136 (** Introduction rules for 'pred_nat' **)
       
   137 
       
   138 goalw Nat.thy [pred_nat_def] "<n, Suc(n)> : pred_nat";
       
   139 by (fast_tac set_cs 1);
       
   140 val pred_natI = result();
       
   141 
       
   142 val major::prems = goalw Nat.thy [pred_nat_def]
       
   143     "[| p : pred_nat;  !!x n. [| p = <n, Suc(n)> |] ==> R \
       
   144 \    |] ==> R";
       
   145 by (rtac (major RS CollectE) 1);
       
   146 by (REPEAT (eresolve_tac ([asm_rl,exE]@prems) 1));
       
   147 val pred_natE = result();
       
   148 
       
   149 goalw Nat.thy [wf_def] "wf(pred_nat)";
       
   150 by (strip_tac 1);
       
   151 by (nat_ind_tac "x" 1);
       
   152 by (fast_tac (HOL_cs addSEs [mp, pred_natE, Pair_inject, 
       
   153 			     make_elim Suc_inject]) 2);
       
   154 by (fast_tac (HOL_cs addSEs [mp, pred_natE, Pair_inject, Zero_neq_Suc]) 1);
       
   155 val wf_pred_nat = result();
       
   156 
       
   157 
       
   158 (*** nat_rec -- by wf recursion on pred_nat ***)
       
   159 
       
   160 val nat_rec_unfold = standard (wf_pred_nat RS (nat_rec_def RS def_wfrec));
       
   161 
       
   162 (** conversion rules **)
       
   163 
       
   164 goal Nat.thy "nat_rec(0,c,h) = c";
       
   165 by (rtac (nat_rec_unfold RS trans) 1);
       
   166 by (rtac nat_case_0 1);
       
   167 val nat_rec_0 = result();
       
   168 
       
   169 goal Nat.thy "nat_rec(Suc(n), c, h) = h(n, nat_rec(n,c,h))";
       
   170 by (rtac (nat_rec_unfold RS trans) 1);
       
   171 by (rtac (nat_case_Suc RS trans) 1);
       
   172 by(simp_tac (HOL_ss addsimps [pred_natI,cut_apply]) 1);
       
   173 val nat_rec_Suc = result();
       
   174 
       
   175 (*These 2 rules ease the use of primitive recursion.  NOTE USE OF == *)
       
   176 val [rew] = goal Nat.thy
       
   177     "[| !!n. f(n) == nat_rec(n,c,h) |] ==> f(0) = c";
       
   178 by (rewtac rew);
       
   179 by (rtac nat_rec_0 1);
       
   180 val def_nat_rec_0 = result();
       
   181 
       
   182 val [rew] = goal Nat.thy
       
   183     "[| !!n. f(n) == nat_rec(n,c,h) |] ==> f(Suc(n)) = h(n,f(n))";
       
   184 by (rewtac rew);
       
   185 by (rtac nat_rec_Suc 1);
       
   186 val def_nat_rec_Suc = result();
       
   187 
       
   188 fun nat_recs def =
       
   189       [standard (def RS def_nat_rec_0),
       
   190        standard (def RS def_nat_rec_Suc)];
       
   191 
       
   192 
       
   193 (*** Basic properties of "less than" ***)
       
   194 
       
   195 (** Introduction properties **)
       
   196 
       
   197 val prems = goalw Nat.thy [less_def] "[| i<j;  j<k |] ==> i<k::nat";
       
   198 by (rtac (trans_trancl RS transD) 1);
       
   199 by (resolve_tac prems 1);
       
   200 by (resolve_tac prems 1);
       
   201 val less_trans = result();
       
   202 
       
   203 goalw Nat.thy [less_def] "n < Suc(n)";
       
   204 by (rtac (pred_natI RS r_into_trancl) 1);
       
   205 val lessI = result();
       
   206 
       
   207 (* i<j ==> i<Suc(j) *)
       
   208 val less_SucI = lessI RSN (2, less_trans);
       
   209 
       
   210 goal Nat.thy "0 < Suc(n)";
       
   211 by (nat_ind_tac "n" 1);
       
   212 by (rtac lessI 1);
       
   213 by (etac less_trans 1);
       
   214 by (rtac lessI 1);
       
   215 val zero_less_Suc = result();
       
   216 
       
   217 (** Elimination properties **)
       
   218 
       
   219 goalw Nat.thy [less_def] "n<m --> ~ m<n::nat";
       
   220 by (rtac (wf_pred_nat RS wf_trancl RS wf_anti_sym RS notI RS impI) 1);
       
   221 by (assume_tac 1);
       
   222 by (assume_tac 1);
       
   223 val less_not_sym = result();
       
   224 
       
   225 (* [| n<m; m<n |] ==> R *)
       
   226 val less_anti_sym = standard (less_not_sym RS mp RS notE);
       
   227 
       
   228 
       
   229 goalw Nat.thy [less_def] "~ n<n::nat";
       
   230 by (rtac notI 1);
       
   231 by (etac (wf_pred_nat RS wf_trancl RS wf_anti_refl) 1);
       
   232 val less_not_refl = result();
       
   233 
       
   234 (* n<n ==> R *)
       
   235 val less_anti_refl = standard (less_not_refl RS notE);
       
   236 
       
   237 
       
   238 val major::prems = goalw Nat.thy [less_def]
       
   239     "[| i<k;  k=Suc(i) ==> P;  !!j. [| i<j;  k=Suc(j) |] ==> P \
       
   240 \    |] ==> P";
       
   241 by (rtac (major RS tranclE) 1);
       
   242 by (fast_tac (HOL_cs addSEs (prems@[pred_natE, Pair_inject])) 1);
       
   243 by (fast_tac (HOL_cs addSEs (prems@[pred_natE, Pair_inject])) 1);
       
   244 val lessE = result();
       
   245 
       
   246 goal Nat.thy "~ n<0";
       
   247 by (rtac notI 1);
       
   248 by (etac lessE 1);
       
   249 by (etac Zero_neq_Suc 1);
       
   250 by (etac Zero_neq_Suc 1);
       
   251 val not_less0 = result();
       
   252 
       
   253 (* n<0 ==> R *)
       
   254 val less_zeroE = standard (not_less0 RS notE);
       
   255 
       
   256 val [major,less,eq] = goal Nat.thy
       
   257     "[| m < Suc(n);  m<n ==> P;  m=n ==> P |] ==> P";
       
   258 by (rtac (major RS lessE) 1);
       
   259 by (rtac eq 1);
       
   260 by (fast_tac (HOL_cs addSDs [Suc_inject]) 1);
       
   261 by (rtac less 1);
       
   262 by (fast_tac (HOL_cs addSDs [Suc_inject]) 1);
       
   263 val less_SucE = result();
       
   264 
       
   265 goal Nat.thy "(m < Suc(n)) = (m < n | m = n)";
       
   266 by (fast_tac (HOL_cs addSIs [lessI]
       
   267 		     addEs  [less_trans, less_SucE]) 1);
       
   268 val less_Suc_eq = result();
       
   269 
       
   270 
       
   271 (** Inductive (?) properties **)
       
   272 
       
   273 val [prem] = goal Nat.thy "Suc(m) < n ==> m<n";
       
   274 by (rtac (prem RS rev_mp) 1);
       
   275 by (nat_ind_tac "n" 1);
       
   276 by (rtac impI 1);
       
   277 by (etac less_zeroE 1);
       
   278 by (fast_tac (HOL_cs addSIs [lessI RS less_SucI]
       
   279 	 	     addSDs [Suc_inject]
       
   280 		     addEs  [less_trans, lessE]) 1);
       
   281 val Suc_lessD = result();
       
   282 
       
   283 val [major,minor] = goal Nat.thy 
       
   284     "[| Suc(i)<k;  !!j. [| i<j;  k=Suc(j) |] ==> P \
       
   285 \    |] ==> P";
       
   286 by (rtac (major RS lessE) 1);
       
   287 by (etac (lessI RS minor) 1);
       
   288 by (etac (Suc_lessD RS minor) 1);
       
   289 by (assume_tac 1);
       
   290 val Suc_lessE = result();
       
   291 
       
   292 val [major] = goal Nat.thy "Suc(m) < Suc(n) ==> m<n";
       
   293 by (rtac (major RS lessE) 1);
       
   294 by (REPEAT (rtac lessI 1
       
   295      ORELSE eresolve_tac [make_elim Suc_inject, ssubst, Suc_lessD] 1));
       
   296 val Suc_less_SucD = result();
       
   297 
       
   298 val prems = goal Nat.thy "m<n ==> Suc(m) < Suc(n)";
       
   299 by (subgoal_tac "m<n --> Suc(m) < Suc(n)" 1);
       
   300 by (fast_tac (HOL_cs addIs prems) 1);
       
   301 by (nat_ind_tac "n" 1);
       
   302 by (rtac impI 1);
       
   303 by (etac less_zeroE 1);
       
   304 by (fast_tac (HOL_cs addSIs [lessI]
       
   305 	 	     addSDs [Suc_inject]
       
   306 		     addEs  [less_trans, lessE]) 1);
       
   307 val Suc_mono = result();
       
   308 
       
   309 goal Nat.thy "(Suc(m) < Suc(n)) = (m<n)";
       
   310 by (EVERY1 [rtac iffI, etac Suc_less_SucD, etac Suc_mono]);
       
   311 val Suc_less_eq = result();
       
   312 
       
   313 val [major] = goal Nat.thy "Suc(n)<n ==> P";
       
   314 by (rtac (major RS Suc_lessD RS less_anti_refl) 1);
       
   315 val not_Suc_n_less_n = result();
       
   316 
       
   317 (*"Less than" is a linear ordering*)
       
   318 goal Nat.thy "m<n | m=n | n<m::nat";
       
   319 by (nat_ind_tac "m" 1);
       
   320 by (nat_ind_tac "n" 1);
       
   321 by (rtac (refl RS disjI1 RS disjI2) 1);
       
   322 by (rtac (zero_less_Suc RS disjI1) 1);
       
   323 by (fast_tac (HOL_cs addIs [lessI, Suc_mono, less_SucI] addEs [lessE]) 1);
       
   324 val less_linear = result();
       
   325 
       
   326 (*Can be used with less_Suc_eq to get n=m | n<m *)
       
   327 goal Nat.thy "(~ m < n) = (n < Suc(m))";
       
   328 by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
       
   329 by(ALLGOALS(asm_simp_tac (HOL_ss addsimps
       
   330                           [not_less0,zero_less_Suc,Suc_less_eq])));
       
   331 val not_less_eq = result();
       
   332 
       
   333 (*Complete induction, aka course-of-values induction*)
       
   334 val prems = goalw Nat.thy [less_def]
       
   335     "[| !!n. [| ! m::nat. m<n --> P(m) |] ==> P(n) |]  ==>  P(n)";
       
   336 by (wf_ind_tac "n" [wf_pred_nat RS wf_trancl] 1);
       
   337 by (eresolve_tac prems 1);
       
   338 val less_induct = result();
       
   339 
       
   340 
       
   341 (*** Properties of <= ***)
       
   342 
       
   343 goalw Nat.thy [le_def] "0 <= n";
       
   344 by (rtac not_less0 1);
       
   345 val le0 = result();
       
   346 
       
   347 val nat_simps = [not_less0, less_not_refl, zero_less_Suc, lessI, 
       
   348 	     Suc_less_eq, less_Suc_eq, le0, 
       
   349 	     Suc_not_Zero, Zero_not_Suc, Suc_Suc_eq, 
       
   350 	     nat_case_0, nat_case_Suc, nat_rec_0, nat_rec_Suc];
       
   351 
       
   352 val nat_ss = pair_ss  addsimps  nat_simps;
       
   353 
       
   354 val prems = goalw Nat.thy [le_def] "~(n<m) ==> m<=n::nat";
       
   355 by (resolve_tac prems 1);
       
   356 val leI = result();
       
   357 
       
   358 val prems = goalw Nat.thy [le_def] "m<=n ==> ~(n<m::nat)";
       
   359 by (resolve_tac prems 1);
       
   360 val leD = result();
       
   361 
       
   362 val leE = make_elim leD;
       
   363 
       
   364 goalw Nat.thy [le_def] "!!m. ~ m <= n ==> n<m::nat";
       
   365 by (fast_tac HOL_cs 1);
       
   366 val not_leE = result();
       
   367 
       
   368 goalw Nat.thy [le_def] "!!m. m < n ==> Suc(m) <= n";
       
   369 by(simp_tac (HOL_ss addsimps [less_Suc_eq]) 1);
       
   370 by (fast_tac (HOL_cs addEs [less_anti_refl,less_anti_sym]) 1);
       
   371 val lessD = result();
       
   372 
       
   373 goalw Nat.thy [le_def] "!!m. m < n ==> m <= n::nat";
       
   374 by (fast_tac (HOL_cs addEs [less_anti_sym]) 1);
       
   375 val less_imp_le = result();
       
   376 
       
   377 goalw Nat.thy [le_def] "!!m. m <= n ==> m < n | m=n::nat";
       
   378 by (cut_facts_tac [less_linear] 1);
       
   379 by (fast_tac (HOL_cs addEs [less_anti_refl,less_anti_sym]) 1);
       
   380 val le_imp_less_or_eq = result();
       
   381 
       
   382 goalw Nat.thy [le_def] "!!m. m<n | m=n ==> m <= n::nat";
       
   383 by (cut_facts_tac [less_linear] 1);
       
   384 by (fast_tac (HOL_cs addEs [less_anti_refl,less_anti_sym]) 1);
       
   385 by (flexflex_tac);
       
   386 val less_or_eq_imp_le = result();
       
   387 
       
   388 goal Nat.thy "(x <= y::nat) = (x < y | x=y)";
       
   389 by (REPEAT(ares_tac [iffI,less_or_eq_imp_le,le_imp_less_or_eq] 1));
       
   390 val le_eq_less_or_eq = result();
       
   391 
       
   392 goal Nat.thy "n <= n::nat";
       
   393 by(simp_tac (HOL_ss addsimps [le_eq_less_or_eq]) 1);
       
   394 val le_refl = result();
       
   395 
       
   396 val prems = goal Nat.thy "!!i. [| i <= j; j < k |] ==> i < k::nat";
       
   397 by (dtac le_imp_less_or_eq 1);
       
   398 by (fast_tac (HOL_cs addIs [less_trans]) 1);
       
   399 val le_less_trans = result();
       
   400 
       
   401 goal Nat.thy "!!i. [| i <= j; j <= k |] ==> i <= k::nat";
       
   402 by (EVERY1[dtac le_imp_less_or_eq, dtac le_imp_less_or_eq,
       
   403           rtac less_or_eq_imp_le, fast_tac (HOL_cs addIs [less_trans])]);
       
   404 val le_trans = result();
       
   405 
       
   406 val prems = goal Nat.thy "!!m. [| m <= n; n <= m |] ==> m = n::nat";
       
   407 by (EVERY1[dtac le_imp_less_or_eq, dtac le_imp_less_or_eq,
       
   408           fast_tac (HOL_cs addEs [less_anti_refl,less_anti_sym])]);
       
   409 val le_anti_sym = result();