sum.ML
changeset 0 7949f97df77a
child 2 befa4e9f7c90
equal deleted inserted replaced
-1:000000000000 0:7949f97df77a
       
     1 (*  Title: 	HOL/sum
       
     2     ID:         $Id$
       
     3     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
       
     4     Copyright   1991  University of Cambridge
       
     5 
       
     6 For sum.ML.  The disjoint sum of two types
       
     7 *)
       
     8 
       
     9 open Sum;
       
    10 
       
    11 (** Inl_Rep and Inr_Rep: Representations of the constructors **)
       
    12 
       
    13 (*This counts as a non-emptiness result for admitting 'a+'b as a type*)
       
    14 goalw Sum.thy [Sum_def] "Inl_Rep(a) : Sum";
       
    15 by (EVERY1 [rtac CollectI, rtac disjI1, rtac exI, rtac refl]);
       
    16 val Inl_RepI = result();
       
    17 
       
    18 goalw Sum.thy [Sum_def] "Inr_Rep(b) : Sum";
       
    19 by (EVERY1 [rtac CollectI, rtac disjI2, rtac exI, rtac refl]);
       
    20 val Inr_RepI = result();
       
    21 
       
    22 goal Sum.thy "inj_onto(Abs_Sum,Sum)";
       
    23 by (rtac inj_onto_inverseI 1);
       
    24 by (etac Abs_Sum_inverse 1);
       
    25 val inj_onto_Abs_Sum = result();
       
    26 
       
    27 (** Distinctness of Inl and Inr **)
       
    28 
       
    29 goalw Sum.thy [Inl_Rep_def, Inr_Rep_def] "~ (Inl_Rep(a) = Inr_Rep(b))";
       
    30 by (EVERY1 [rtac notI,
       
    31 	    etac (fun_cong RS fun_cong RS fun_cong RS iffE), 
       
    32 	    rtac (notE RS ccontr),  etac (mp RS conjunct2), 
       
    33 	    REPEAT o (ares_tac [refl,conjI]) ]);
       
    34 val Inl_Rep_not_Inr_Rep = result();
       
    35 
       
    36 goalw Sum.thy [Inl_def,Inr_def] "~ Inl(a)=Inr(b)";
       
    37 by (rtac (inj_onto_Abs_Sum RS inj_onto_contraD) 1);
       
    38 by (rtac Inl_Rep_not_Inr_Rep 1);
       
    39 by (rtac Inl_RepI 1);
       
    40 by (rtac Inr_RepI 1);
       
    41 val Inl_not_Inr = result();
       
    42 
       
    43 val Inl_neq_Inr = standard (Inl_not_Inr RS notE);
       
    44 val Inr_neq_Inl = sym RS Inl_neq_Inr;
       
    45 
       
    46 (** Injectiveness of Inl and Inr **)
       
    47 
       
    48 val [major] = goalw Sum.thy [Inl_Rep_def] "Inl_Rep(a) = Inl_Rep(c) ==> a=c";
       
    49 by (rtac (major RS fun_cong RS fun_cong RS fun_cong RS iffE) 1);
       
    50 by (fast_tac HOL_cs 1);
       
    51 val Inl_Rep_inject = result();
       
    52 
       
    53 val [major] = goalw Sum.thy [Inr_Rep_def] "Inr_Rep(b) = Inr_Rep(d) ==> b=d";
       
    54 by (rtac (major RS fun_cong RS fun_cong RS fun_cong RS iffE) 1);
       
    55 by (fast_tac HOL_cs 1);
       
    56 val Inr_Rep_inject = result();
       
    57 
       
    58 goalw Sum.thy [Inl_def] "inj(Inl)";
       
    59 by (rtac injI 1);
       
    60 by (etac (inj_onto_Abs_Sum RS inj_ontoD RS Inl_Rep_inject) 1);
       
    61 by (rtac Inl_RepI 1);
       
    62 by (rtac Inl_RepI 1);
       
    63 val inj_Inl = result();
       
    64 val Inl_inject = inj_Inl RS injD;
       
    65 
       
    66 goalw Sum.thy [Inr_def] "inj(Inr)";
       
    67 by (rtac injI 1);
       
    68 by (etac (inj_onto_Abs_Sum RS inj_ontoD RS Inr_Rep_inject) 1);
       
    69 by (rtac Inr_RepI 1);
       
    70 by (rtac Inr_RepI 1);
       
    71 val inj_Inr = result();
       
    72 val Inr_inject = inj_Inr RS injD;
       
    73 
       
    74 goal Sum.thy "(Inl(x)=Inl(y)) = (x=y)";
       
    75 br iffI 1;
       
    76 be (rewrite_rule [inj_def] Inl_inject) 1;
       
    77 be ssubst 1;
       
    78 br refl 1;
       
    79 val Inl_inj = result();
       
    80 
       
    81 goal Sum.thy "(Inr(x)=Inr(y)) = (x=y)";
       
    82 br iffI 1;
       
    83 be (rewrite_rule [inj_def] Inr_inject) 1;
       
    84 be ssubst 1;
       
    85 br refl 1;
       
    86 val Inr_inj = result();
       
    87 
       
    88 (** case -- the selection operator for sums **)
       
    89 
       
    90 goalw Sum.thy [case_def] "case(Inl(x), f, g) = f(x)";
       
    91 by (fast_tac (set_cs addIs [select_equality] 
       
    92 		     addSEs [make_elim Inl_inject, Inl_neq_Inr]) 1);
       
    93 val case_Inl = result();
       
    94 
       
    95 goalw Sum.thy [case_def] "case(Inr(x), f, g) = g(x)";
       
    96 by (fast_tac (set_cs addIs [select_equality] 
       
    97 		     addSEs [make_elim Inr_inject, Inr_neq_Inl]) 1);
       
    98 val case_Inr = result();
       
    99 
       
   100 (** Exhaustion rule for sums -- a degenerate form of induction **)
       
   101 
       
   102 val prems = goalw Sum.thy [Inl_def,Inr_def]
       
   103     "[| !!x::'a. s = Inl(x) ==> P;  !!y::'b. s = Inr(y) ==> P \
       
   104 \    |] ==> P";
       
   105 by (rtac (rewrite_rule [Sum_def] Rep_Sum RS CollectE) 1);
       
   106 by (REPEAT (eresolve_tac [disjE,exE] 1
       
   107      ORELSE EVERY1 [resolve_tac prems, 
       
   108 		    etac subst,
       
   109 		    rtac (Rep_Sum_inverse RS sym)]));
       
   110 val sumE = result();
       
   111 
       
   112 goal Sum.thy "case(s, %x::'a. f(Inl(x)), %y::'b. f(Inr(y))) = f(s)";
       
   113 by (EVERY1 [res_inst_tac [("s","s")] sumE, 
       
   114 	    etac ssubst, rtac case_Inl,
       
   115 	    etac ssubst, rtac case_Inr]);
       
   116 val surjective_sum = result();
       
   117 
       
   118 goal Sum.thy "R(case(s,f,g)) = \
       
   119 \             ((! x. s = Inl(x) --> R(f(x))) & (! y. s = Inr(y) --> R(g(y))))";
       
   120 by (rtac sumE 1);
       
   121 by (etac ssubst 1);
       
   122 by (stac case_Inl 1);
       
   123 by (fast_tac (set_cs addSEs [make_elim Inl_inject, Inl_neq_Inr]) 1);
       
   124 by (etac ssubst 1);
       
   125 by (stac case_Inr 1);
       
   126 by (fast_tac (set_cs addSEs [make_elim Inr_inject, Inr_neq_Inl]) 1);
       
   127 val expand_case = result();
       
   128 
       
   129 (*FIXME: case's congruence rule only should simplifies the first argument*)
       
   130 val sum_ss = pair_ss addsimps [case_Inl, case_Inr];