trancl.ML
changeset 0 7949f97df77a
equal deleted inserted replaced
-1:000000000000 0:7949f97df77a
       
     1 (*  Title: 	HOL/trancl
       
     2     ID:         $Id$
       
     3     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
       
     4     Copyright   1992  University of Cambridge
       
     5 
       
     6 For trancl.thy.  Theorems about the transitive closure of a relation
       
     7 *)
       
     8 
       
     9 open Trancl;
       
    10 
       
    11 (** Natural deduction for trans(r) **)
       
    12 
       
    13 val prems = goalw Trancl.thy [trans_def]
       
    14     "(!! x y z. [| <x,y>:r;  <y,z>:r |] ==> <x,z>:r) ==> trans(r)";
       
    15 by (REPEAT (ares_tac (prems@[allI,impI]) 1));
       
    16 val transI = result();
       
    17 
       
    18 val major::prems = goalw Trancl.thy [trans_def]
       
    19     "[| trans(r);  <a,b>:r;  <b,c>:r |] ==> <a,c>:r";
       
    20 by (cut_facts_tac [major] 1);
       
    21 by (fast_tac (HOL_cs addIs prems) 1);
       
    22 val transD = result();
       
    23 
       
    24 (** Identity relation **)
       
    25 
       
    26 goalw Trancl.thy [id_def] "<a,a> : id";  
       
    27 by (rtac CollectI 1);
       
    28 by (rtac exI 1);
       
    29 by (rtac refl 1);
       
    30 val idI = result();
       
    31 
       
    32 val major::prems = goalw Trancl.thy [id_def]
       
    33     "[| p: id;  !!x.[| p = <x,x> |] ==> P  \
       
    34 \    |] ==>  P";  
       
    35 by (rtac (major RS CollectE) 1);
       
    36 by (etac exE 1);
       
    37 by (eresolve_tac prems 1);
       
    38 val idE = result();
       
    39 
       
    40 (** Composition of two relations **)
       
    41 
       
    42 val prems = goalw Trancl.thy [comp_def]
       
    43     "[| <a,b>:s; <b,c>:r |] ==> <a,c> : r O s";
       
    44 by (fast_tac (set_cs addIs prems) 1);
       
    45 val compI = result();
       
    46 
       
    47 (*proof requires higher-level assumptions or a delaying of hyp_subst_tac*)
       
    48 val prems = goalw Trancl.thy [comp_def]
       
    49     "[| xz : r O s;  \
       
    50 \       !!x y z. [| xz = <x,z>;  <x,y>:s;  <y,z>:r |] ==> P \
       
    51 \    |] ==> P";
       
    52 by (cut_facts_tac prems 1);
       
    53 by (REPEAT (eresolve_tac [CollectE, exE, conjE] 1 ORELSE ares_tac prems 1));
       
    54 val compE = result();
       
    55 
       
    56 val prems = goal Trancl.thy
       
    57     "[| <a,c> : r O s;  \
       
    58 \       !!y. [| <a,y>:s;  <y,c>:r |] ==> P \
       
    59 \    |] ==> P";
       
    60 by (rtac compE 1);
       
    61 by (REPEAT (ares_tac prems 1 ORELSE eresolve_tac [Pair_inject,ssubst] 1));
       
    62 val compEpair = result();
       
    63 
       
    64 val comp_cs = set_cs addIs [compI,idI] 
       
    65 		     addSEs [compE,idE,Pair_inject];
       
    66 
       
    67 val prems = goal Trancl.thy
       
    68     "[| r'<=r; s'<=s |] ==> (r' O s') <= (r O s)";
       
    69 by (cut_facts_tac prems 1);
       
    70 by (fast_tac comp_cs 1);
       
    71 val comp_mono = result();
       
    72 
       
    73 val prems = goal Trancl.thy
       
    74     "[| s <= Sigma(A,%x.B);  r <= Sigma(B,%x.C) |] ==> \
       
    75 \    (r O s) <= Sigma(A,%x.C)";
       
    76 by (cut_facts_tac prems 1);
       
    77 by (fast_tac (comp_cs addIs [SigmaI] addSEs [SigmaE2]) 1);
       
    78 val comp_subset_Sigma = result();
       
    79 
       
    80 
       
    81 (** The relation rtrancl **)
       
    82 
       
    83 goal Trancl.thy "mono(%s. id Un (r O s))";
       
    84 by (rtac monoI 1);
       
    85 by (REPEAT (ares_tac [monoI, subset_refl, comp_mono, Un_mono] 1));
       
    86 val rtrancl_fun_mono = result();
       
    87 
       
    88 val rtrancl_unfold = rtrancl_fun_mono RS (rtrancl_def RS def_lfp_Tarski);
       
    89 
       
    90 (*Reflexivity of rtrancl*)
       
    91 goal Trancl.thy "<a,a> : r^*";
       
    92 by (stac rtrancl_unfold 1);
       
    93 by (fast_tac comp_cs 1);
       
    94 val rtrancl_refl = result();
       
    95 
       
    96 (*Closure under composition with r*)
       
    97 val prems = goal Trancl.thy
       
    98     "[| <a,b> : r^*;  <b,c> : r |] ==> <a,c> : r^*";
       
    99 by (stac rtrancl_unfold 1);
       
   100 by (fast_tac (comp_cs addIs prems) 1);
       
   101 val rtrancl_into_rtrancl = result();
       
   102 
       
   103 (*rtrancl of r contains r*)
       
   104 val [prem] = goal Trancl.thy "[| <a,b> : r |] ==> <a,b> : r^*";
       
   105 by (rtac (rtrancl_refl RS rtrancl_into_rtrancl) 1);
       
   106 by (rtac prem 1);
       
   107 val r_into_rtrancl = result();
       
   108 
       
   109 (*monotonicity of rtrancl*)
       
   110 goalw Trancl.thy [rtrancl_def] "!!r s. r <= s ==> r^* <= s^*";
       
   111 by(REPEAT(ares_tac [lfp_mono,Un_mono,comp_mono,subset_refl] 1));
       
   112 val rtrancl_mono = result();
       
   113 
       
   114 (** standard induction rule **)
       
   115 
       
   116 val major::prems = goal Trancl.thy 
       
   117   "[| <a,b> : r^*; \
       
   118 \     !!x. P(<x,x>); \
       
   119 \     !!x y z.[| P(<x,y>); <x,y>: r^*; <y,z>: r |]  ==>  P(<x,z>) |] \
       
   120 \  ==>  P(<a,b>)";
       
   121 by (rtac (major RS (rtrancl_def RS def_induct)) 1);
       
   122 by (rtac rtrancl_fun_mono 1);
       
   123 by (fast_tac (comp_cs addIs prems) 1);
       
   124 val rtrancl_full_induct = result();
       
   125 
       
   126 (*nice induction rule*)
       
   127 val major::prems = goal Trancl.thy
       
   128     "[| <a::'a,b> : r^*;    \
       
   129 \       P(a); \
       
   130 \	!!y z.[| <a,y> : r^*;  <y,z> : r;  P(y) |] ==> P(z) |]  \
       
   131 \     ==> P(b)";
       
   132 (*by induction on this formula*)
       
   133 by (subgoal_tac "! y. <a::'a,b> = <a,y> --> P(y)" 1);
       
   134 (*now solve first subgoal: this formula is sufficient*)
       
   135 by (fast_tac HOL_cs 1);
       
   136 (*now do the induction*)
       
   137 by (resolve_tac [major RS rtrancl_full_induct] 1);
       
   138 by (fast_tac (comp_cs addIs prems) 1);
       
   139 by (fast_tac (comp_cs addIs prems) 1);
       
   140 val rtrancl_induct = result();
       
   141 
       
   142 (*transitivity of transitive closure!! -- by induction.*)
       
   143 goal Trancl.thy "trans(r^*)";
       
   144 by (rtac transI 1);
       
   145 by (res_inst_tac [("b","z")] rtrancl_induct 1);
       
   146 by (DEPTH_SOLVE (eresolve_tac [asm_rl, rtrancl_into_rtrancl] 1));
       
   147 val trans_rtrancl = result();
       
   148 
       
   149 (*elimination of rtrancl -- by induction on a special formula*)
       
   150 val major::prems = goal Trancl.thy
       
   151     "[| <a::'a,b> : r^*;  (a = b) ==> P; 	\
       
   152 \	!!y.[| <a,y> : r^*; <y,b> : r |] ==> P 	\
       
   153 \    |] ==> P";
       
   154 by (subgoal_tac "a::'a = b  | (? y. <a,y> : r^* & <y,b> : r)" 1);
       
   155 by (rtac (major RS rtrancl_induct) 2);
       
   156 by (fast_tac (set_cs addIs prems) 2);
       
   157 by (fast_tac (set_cs addIs prems) 2);
       
   158 by (REPEAT (eresolve_tac ([asm_rl,exE,disjE,conjE]@prems) 1));
       
   159 val rtranclE = result();
       
   160 
       
   161 
       
   162 (**** The relation trancl ****)
       
   163 
       
   164 (** Conversions between trancl and rtrancl **)
       
   165 
       
   166 val [major] = goalw Trancl.thy [trancl_def]
       
   167     "<a,b> : r^+ ==> <a,b> : r^*";
       
   168 by (resolve_tac [major RS compEpair] 1);
       
   169 by (REPEAT (ares_tac [rtrancl_into_rtrancl] 1));
       
   170 val trancl_into_rtrancl = result();
       
   171 
       
   172 (*r^+ contains r*)
       
   173 val [prem] = goalw Trancl.thy [trancl_def]
       
   174    "[| <a,b> : r |] ==> <a,b> : r^+";
       
   175 by (REPEAT (ares_tac [prem,compI,rtrancl_refl] 1));
       
   176 val r_into_trancl = result();
       
   177 
       
   178 (*intro rule by definition: from rtrancl and r*)
       
   179 val prems = goalw Trancl.thy [trancl_def]
       
   180     "[| <a,b> : r^*;  <b,c> : r |]   ==>  <a,c> : r^+";
       
   181 by (REPEAT (resolve_tac ([compI]@prems) 1));
       
   182 val rtrancl_into_trancl1 = result();
       
   183 
       
   184 (*intro rule from r and rtrancl*)
       
   185 val prems = goal Trancl.thy
       
   186     "[| <a,b> : r;  <b,c> : r^* |]   ==>  <a,c> : r^+";
       
   187 by (resolve_tac (prems RL [rtranclE]) 1);
       
   188 by (etac subst 1);
       
   189 by (resolve_tac (prems RL [r_into_trancl]) 1);
       
   190 by (rtac (trans_rtrancl RS transD RS rtrancl_into_trancl1) 1);
       
   191 by (REPEAT (ares_tac (prems@[r_into_rtrancl]) 1));
       
   192 val rtrancl_into_trancl2 = result();
       
   193 
       
   194 (*elimination of r^+ -- NOT an induction rule*)
       
   195 val major::prems = goal Trancl.thy
       
   196     "[| <a::'a,b> : r^+;  \
       
   197 \       <a,b> : r ==> P; \
       
   198 \	!!y.[| <a,y> : r^+;  <y,b> : r |] ==> P  \
       
   199 \    |] ==> P";
       
   200 by (subgoal_tac "<a::'a,b> : r | (? y. <a,y> : r^+  &  <y,b> : r)" 1);
       
   201 by (REPEAT (eresolve_tac ([asm_rl,disjE,exE,conjE]@prems) 1));
       
   202 by (rtac (rewrite_rule [trancl_def] major RS compEpair) 1);
       
   203 by (etac rtranclE 1);
       
   204 by (fast_tac comp_cs 1);
       
   205 by (fast_tac (comp_cs addSIs [rtrancl_into_trancl1]) 1);
       
   206 val tranclE = result();
       
   207 
       
   208 (*Transitivity of r^+.
       
   209   Proved by unfolding since it uses transitivity of rtrancl. *)
       
   210 goalw Trancl.thy [trancl_def] "trans(r^+)";
       
   211 by (rtac transI 1);
       
   212 by (REPEAT (etac compEpair 1));
       
   213 by (rtac (rtrancl_into_rtrancl RS (trans_rtrancl RS transD RS compI)) 1);
       
   214 by (REPEAT (assume_tac 1));
       
   215 val trans_trancl = result();
       
   216 
       
   217 val prems = goal Trancl.thy
       
   218     "[| <a,b> : r;  <b,c> : r^+ |]   ==>  <a,c> : r^+";
       
   219 by (rtac (r_into_trancl RS (trans_trancl RS transD)) 1);
       
   220 by (resolve_tac prems 1);
       
   221 by (resolve_tac prems 1);
       
   222 val trancl_into_trancl2 = result();
       
   223 
       
   224 
       
   225 val major::prems = goal Trancl.thy
       
   226     "[| <a,b> : r^*;  r <= Sigma(A,%x.A) |] ==> a=b | a:A";
       
   227 by (cut_facts_tac prems 1);
       
   228 by (rtac (major RS rtrancl_induct) 1);
       
   229 by (rtac (refl RS disjI1) 1);
       
   230 by (fast_tac (comp_cs addSEs [SigmaE2]) 1);
       
   231 val trancl_subset_Sigma_lemma = result();
       
   232 
       
   233 val prems = goalw Trancl.thy [trancl_def]
       
   234     "r <= Sigma(A,%x.A) ==> trancl(r) <= Sigma(A,%x.A)";
       
   235 by (cut_facts_tac prems 1);
       
   236 by (fast_tac (comp_cs addIs [SigmaI] 
       
   237                       addSDs [trancl_subset_Sigma_lemma]
       
   238                       addSEs [SigmaE2]) 1);
       
   239 val trancl_subset_Sigma = result();
       
   240