|
1 (* Title: HOL/inductive.ML |
|
2 ID: $Id$ |
|
3 Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 Copyright 1993 University of Cambridge |
|
5 |
|
6 (Co)Inductive Definitions for HOL |
|
7 |
|
8 Inductive definitions use least fixedpoints with standard products and sums |
|
9 Coinductive definitions use greatest fixedpoints with Quine products and sums |
|
10 |
|
11 Sums are used only for mutual recursion; |
|
12 Products are used only to derive "streamlined" induction rules for relations |
|
13 *) |
|
14 |
|
15 local open Ind_Syntax |
|
16 in |
|
17 |
|
18 fun gen_fp_oper a (X,T,t) = |
|
19 let val setT = mk_set T |
|
20 in Const(a, (setT-->setT)-->setT) $ absfree(X, setT, t) end; |
|
21 |
|
22 structure Lfp_items = |
|
23 struct |
|
24 val oper = gen_fp_oper "lfp" |
|
25 val Tarski = def_lfp_Tarski |
|
26 val induct = def_induct |
|
27 end; |
|
28 |
|
29 structure Gfp_items = |
|
30 struct |
|
31 val oper = gen_fp_oper "gfp" |
|
32 val Tarski = def_gfp_Tarski |
|
33 val induct = def_Collect_coinduct |
|
34 end; |
|
35 |
|
36 end; |
|
37 |
|
38 |
|
39 functor Ind_section_Fun (Inductive: sig include INDUCTIVE_ARG INDUCTIVE_I end) |
|
40 : sig include INTR_ELIM INDRULE end = |
|
41 struct |
|
42 structure Intr_elim = Intr_elim_Fun(structure Inductive=Inductive and |
|
43 Fp=Lfp_items); |
|
44 |
|
45 structure Indrule = Indrule_Fun |
|
46 (structure Inductive=Inductive and Intr_elim=Intr_elim); |
|
47 |
|
48 open Intr_elim Indrule |
|
49 end; |
|
50 |
|
51 |
|
52 structure Ind = Add_inductive_def_Fun (Lfp_items); |
|
53 |
|
54 |
|
55 signature INDUCTIVE_STRING = |
|
56 sig |
|
57 val thy_name : string (*name of the new theory*) |
|
58 val srec_tms : string list (*recursion terms*) |
|
59 val sintrs : string list (*desired introduction rules*) |
|
60 end; |
|
61 |
|
62 |
|
63 (*For upwards compatibility: can be called directly from ML*) |
|
64 functor Inductive_Fun |
|
65 (Inductive: sig include INDUCTIVE_STRING INDUCTIVE_ARG end) |
|
66 : sig include INTR_ELIM INDRULE end = |
|
67 Ind_section_Fun |
|
68 (open Inductive Ind_Syntax |
|
69 val sign = sign_of thy; |
|
70 val rec_tms = map (readtm sign termTVar) srec_tms |
|
71 and intr_tms = map (readtm sign propT) sintrs; |
|
72 val thy = thy |> Ind.add_fp_def_i(rec_tms, intr_tms) |
|
73 |> add_thyname thy_name); |
|
74 |
|
75 |
|
76 |
|
77 signature COINDRULE = |
|
78 sig |
|
79 val coinduct : thm |
|
80 end; |
|
81 |
|
82 |
|
83 functor CoInd_section_Fun |
|
84 (Inductive: sig include INDUCTIVE_ARG INDUCTIVE_I end) |
|
85 : sig include INTR_ELIM COINDRULE end = |
|
86 struct |
|
87 structure Intr_elim = Intr_elim_Fun(structure Inductive=Inductive and Fp=Gfp_items); |
|
88 |
|
89 open Intr_elim |
|
90 val coinduct = raw_induct |
|
91 end; |
|
92 |
|
93 |
|
94 structure CoInd = Add_inductive_def_Fun(Gfp_items); |
|
95 |
|
96 |
|
97 |
|
98 (*For installing the theory section. co is either "" or "Co"*) |
|
99 fun inductive_decl co = |
|
100 let open ThyParse Ind_Syntax |
|
101 fun mk_intr_name (s,_) = (*the "op" cancels any infix status*) |
|
102 if Syntax.is_identifier s then "op " ^ s else "_" |
|
103 fun mk_params (((recs, ipairs), monos), con_defs) = |
|
104 let val big_rec_name = space_implode "_" (map (scan_to_id o trim) recs) |
|
105 and srec_tms = mk_list recs |
|
106 and sintrs = mk_big_list (map snd ipairs) |
|
107 val stri_name = big_rec_name ^ "_Intrnl" |
|
108 in |
|
109 (";\n\n\ |
|
110 \structure " ^ stri_name ^ " =\n\ |
|
111 \ let open Ind_Syntax in\n\ |
|
112 \ struct\n\ |
|
113 \ val _ = writeln \"" ^ co ^ |
|
114 "Inductive definition " ^ big_rec_name ^ "\"\n\ |
|
115 \ val rec_tms\t= map (readtm (sign_of thy) termTVar) " |
|
116 ^ srec_tms ^ "\n\ |
|
117 \ and intr_tms\t= map (readtm (sign_of thy) propT)\n" |
|
118 ^ sintrs ^ "\n\ |
|
119 \ end\n\ |
|
120 \ end;\n\n\ |
|
121 \val thy = thy |> " ^ co ^ "Ind.add_fp_def_i \n (" ^ |
|
122 stri_name ^ ".rec_tms, " ^ |
|
123 stri_name ^ ".intr_tms)" |
|
124 , |
|
125 "structure " ^ big_rec_name ^ " =\n\ |
|
126 \ struct\n\ |
|
127 \ structure Result = " ^ co ^ "Ind_section_Fun\n\ |
|
128 \ (open " ^ stri_name ^ "\n\ |
|
129 \ val thy\t\t= thy\n\ |
|
130 \ val monos\t\t= " ^ monos ^ "\n\ |
|
131 \ val con_defs\t\t= " ^ con_defs ^ ");\n\n\ |
|
132 \ val " ^ mk_list (map mk_intr_name ipairs) ^ " = Result.intrs;\n\ |
|
133 \ open Result\n\ |
|
134 \ end\n" |
|
135 ) |
|
136 end |
|
137 val ipairs = "intrs" $$-- repeat1 (ident -- !! string) |
|
138 fun optstring s = optional (s $$-- string) "\"[]\"" >> trim |
|
139 in repeat1 string -- ipairs -- optstring "monos" -- optstring "con_defs" |
|
140 >> mk_params |
|
141 end; |