Fun.ML
changeset 252 a4dc62a46ee4
parent 251 f04b33ce250f
child 253 132634d24019
equal deleted inserted replaced
251:f04b33ce250f 252:a4dc62a46ee4
     1 (*  Title: 	HOL/Fun
       
     2     ID:         $Id$
       
     3     Author: 	Tobias Nipkow, Cambridge University Computer Laboratory
       
     4     Copyright   1993  University of Cambridge
       
     5 
       
     6 Lemmas about functions.
       
     7 *)
       
     8 
       
     9 goal Fun.thy "(f = g) = (!x. f(x)=g(x))";
       
    10 by (rtac iffI 1);
       
    11 by(asm_simp_tac HOL_ss 1);
       
    12 by(rtac ext 1 THEN asm_simp_tac HOL_ss 1);
       
    13 qed "expand_fun_eq";
       
    14 
       
    15 val prems = goal Fun.thy
       
    16     "[| f(x)=u;  !!x. P(x) ==> g(f(x)) = x;  P(x) |] ==> x=g(u)";
       
    17 by (rtac (arg_cong RS box_equals) 1);
       
    18 by (REPEAT (resolve_tac (prems@[refl]) 1));
       
    19 qed "apply_inverse";
       
    20 
       
    21 
       
    22 (*** Range of a function ***)
       
    23 
       
    24 (*Frequently b does not have the syntactic form of f(x).*)
       
    25 val [prem] = goalw Fun.thy [range_def] "b=f(x) ==> b : range(f)";
       
    26 by (EVERY1 [rtac CollectI, rtac exI, rtac prem]);
       
    27 qed "range_eqI";
       
    28 
       
    29 val rangeI = refl RS range_eqI;
       
    30 
       
    31 val [major,minor] = goalw Fun.thy [range_def]
       
    32     "[| b : range(%x.f(x));  !!x. b=f(x) ==> P |] ==> P"; 
       
    33 by (rtac (major RS CollectD RS exE) 1);
       
    34 by (etac minor 1);
       
    35 qed "rangeE";
       
    36 
       
    37 (*** Image of a set under a function ***)
       
    38 
       
    39 val prems = goalw Fun.thy [image_def] "[| b=f(x);  x:A |] ==> b : f``A";
       
    40 by (REPEAT (resolve_tac (prems @ [CollectI,bexI,prem]) 1));
       
    41 qed "image_eqI";
       
    42 
       
    43 val imageI = refl RS image_eqI;
       
    44 
       
    45 (*The eta-expansion gives variable-name preservation.*)
       
    46 val major::prems = goalw Fun.thy [image_def]
       
    47     "[| b : (%x.f(x))``A;  !!x.[| b=f(x);  x:A |] ==> P |] ==> P"; 
       
    48 by (rtac (major RS CollectD RS bexE) 1);
       
    49 by (REPEAT (ares_tac prems 1));
       
    50 qed "imageE";
       
    51 
       
    52 goalw Fun.thy [o_def] "(f o g)``r = f``(g``r)";
       
    53 by (rtac set_ext 1);
       
    54 by (fast_tac (HOL_cs addIs [imageI] addSEs [imageE]) 1);
       
    55 qed "image_compose";
       
    56 
       
    57 goal Fun.thy "f``(A Un B) = f``A Un f``B";
       
    58 by (rtac set_ext 1);
       
    59 by (fast_tac (HOL_cs addIs [imageI,UnCI] addSEs [imageE,UnE]) 1);
       
    60 qed "image_Un";
       
    61 
       
    62 (*** inj(f): f is a one-to-one function ***)
       
    63 
       
    64 val prems = goalw Fun.thy [inj_def]
       
    65     "[| !! x y. f(x) = f(y) ==> x=y |] ==> inj(f)";
       
    66 by (fast_tac (HOL_cs addIs prems) 1);
       
    67 qed "injI";
       
    68 
       
    69 val [major] = goal Fun.thy "(!!x. g(f(x)) = x) ==> inj(f)";
       
    70 by (rtac injI 1);
       
    71 by (etac (arg_cong RS box_equals) 1);
       
    72 by (rtac major 1);
       
    73 by (rtac major 1);
       
    74 qed "inj_inverseI";
       
    75 
       
    76 val [major,minor] = goalw Fun.thy [inj_def]
       
    77     "[| inj(f); f(x) = f(y) |] ==> x=y";
       
    78 by (rtac (major RS spec RS spec RS mp) 1);
       
    79 by (rtac minor 1);
       
    80 qed "injD";
       
    81 
       
    82 (*Useful with the simplifier*)
       
    83 val [major] = goal Fun.thy "inj(f) ==> (f(x) = f(y)) = (x=y)";
       
    84 by (rtac iffI 1);
       
    85 by (etac (major RS injD) 1);
       
    86 by (etac arg_cong 1);
       
    87 qed "inj_eq";
       
    88 
       
    89 val [major] = goal Fun.thy "inj(f) ==> (@x.f(x)=f(y)) = y";
       
    90 by (rtac (major RS injD) 1);
       
    91 by (rtac selectI 1);
       
    92 by (rtac refl 1);
       
    93 qed "inj_select";
       
    94 
       
    95 (*A one-to-one function has an inverse (given using select).*)
       
    96 val [major] = goalw Fun.thy [Inv_def] "inj(f) ==> Inv(f,f(x)) = x";
       
    97 by (EVERY1 [rtac (major RS inj_select)]);
       
    98 qed "Inv_f_f";
       
    99 
       
   100 (* Useful??? *)
       
   101 val [oneone,minor] = goal Fun.thy
       
   102     "[| inj(f); !!y. y: range(f) ==> P(Inv(f,y)) |] ==> P(x)";
       
   103 by (res_inst_tac [("t", "x")] (oneone RS (Inv_f_f RS subst)) 1);
       
   104 by (rtac (rangeI RS minor) 1);
       
   105 qed "inj_transfer";
       
   106 
       
   107 
       
   108 (*** inj_onto(f,A): f is one-to-one over A ***)
       
   109 
       
   110 val prems = goalw Fun.thy [inj_onto_def]
       
   111     "(!! x y. [| f(x) = f(y);  x:A;  y:A |] ==> x=y) ==> inj_onto(f,A)";
       
   112 by (fast_tac (HOL_cs addIs prems addSIs [ballI]) 1);
       
   113 qed "inj_ontoI";
       
   114 
       
   115 val [major] = goal Fun.thy 
       
   116     "(!!x. x:A ==> g(f(x)) = x) ==> inj_onto(f,A)";
       
   117 by (rtac inj_ontoI 1);
       
   118 by (etac (apply_inverse RS trans) 1);
       
   119 by (REPEAT (eresolve_tac [asm_rl,major] 1));
       
   120 qed "inj_onto_inverseI";
       
   121 
       
   122 val major::prems = goalw Fun.thy [inj_onto_def]
       
   123     "[| inj_onto(f,A);  f(x)=f(y);  x:A;  y:A |] ==> x=y";
       
   124 by (rtac (major RS bspec RS bspec RS mp) 1);
       
   125 by (REPEAT (resolve_tac prems 1));
       
   126 qed "inj_ontoD";
       
   127 
       
   128 goal Fun.thy "!!x y.[| inj_onto(f,A);  x:A;  y:A |] ==> (f(x)=f(y)) = (x=y)";
       
   129 by (fast_tac (HOL_cs addSEs [inj_ontoD]) 1);
       
   130 qed "inj_onto_iff";
       
   131 
       
   132 val major::prems = goal Fun.thy
       
   133     "[| inj_onto(f,A);  ~x=y;  x:A;  y:A |] ==> ~ f(x)=f(y)";
       
   134 by (rtac contrapos 1);
       
   135 by (etac (major RS inj_ontoD) 2);
       
   136 by (REPEAT (resolve_tac prems 1));
       
   137 qed "inj_onto_contraD";
       
   138 
       
   139 
       
   140 (*** Lemmas about inj ***)
       
   141 
       
   142 val prems = goalw Fun.thy [o_def]
       
   143     "[| inj(f);  inj_onto(g,range(f)) |] ==> inj(g o f)";
       
   144 by (cut_facts_tac prems 1);
       
   145 by (fast_tac (HOL_cs addIs [injI,rangeI]
       
   146                      addEs [injD,inj_ontoD]) 1);
       
   147 qed "comp_inj";
       
   148 
       
   149 val [prem] = goal Fun.thy "inj(f) ==> inj_onto(f,A)";
       
   150 by (fast_tac (HOL_cs addIs [prem RS injD, inj_ontoI]) 1);
       
   151 qed "inj_imp";
       
   152 
       
   153 val [prem] = goalw Fun.thy [Inv_def] "y : range(f) ==> f(Inv(f,y)) = y";
       
   154 by (EVERY1 [rtac (prem RS rangeE), rtac selectI, etac sym]);
       
   155 qed "f_Inv_f";
       
   156 
       
   157 val prems = goal Fun.thy
       
   158     "[| Inv(f,x)=Inv(f,y); x: range(f);  y: range(f) |] ==> x=y";
       
   159 by (rtac (arg_cong RS box_equals) 1);
       
   160 by (REPEAT (resolve_tac (prems @ [f_Inv_f]) 1));
       
   161 qed "Inv_injective";
       
   162 
       
   163 val prems = goal Fun.thy
       
   164     "[| inj(f);  A<=range(f) |] ==> inj_onto(Inv(f), A)";
       
   165 by (cut_facts_tac prems 1);
       
   166 by (fast_tac (HOL_cs addIs [inj_ontoI] 
       
   167 		     addEs [Inv_injective,injD,subsetD]) 1);
       
   168 qed "inj_onto_Inv";
       
   169 
       
   170 
       
   171 (*** Set reasoning tools ***)
       
   172 
       
   173 val set_cs = HOL_cs 
       
   174     addSIs [ballI, PowI, subsetI, InterI, INT_I, INT1_I, CollectI, 
       
   175 	    ComplI, IntI, DiffI, UnCI, insertCI] 
       
   176     addIs  [bexI, UnionI, UN_I, UN1_I, imageI, rangeI] 
       
   177     addSEs [bexE, make_elim PowD, UnionE, UN_E, UN1_E, DiffE,
       
   178 	    CollectE, ComplE, IntE, UnE, insertE, imageE, rangeE, emptyE] 
       
   179     addEs  [ballE, InterD, InterE, INT_D, INT_E, make_elim INT1_D,
       
   180 	    subsetD, subsetCE];
       
   181 
       
   182 fun cfast_tac prems = cut_facts_tac prems THEN' fast_tac set_cs;
       
   183 
       
   184 
       
   185 fun prover s = prove_goal Fun.thy s (fn _=>[fast_tac set_cs 1]);
       
   186 
       
   187 val mem_simps = map prover
       
   188  [ "(a : A Un B)   =  (a:A | a:B)",
       
   189    "(a : A Int B)  =  (a:A & a:B)",
       
   190    "(a : Compl(B)) =  (~a:B)",
       
   191    "(a : A-B)      =  (a:A & ~a:B)",
       
   192    "(a : {b})      =  (a=b)",
       
   193    "(a : {x.P(x)}) =  P(a)" ];
       
   194 
       
   195 val mksimps_pairs = ("Ball",[bspec]) :: mksimps_pairs;
       
   196 
       
   197 val set_ss =
       
   198   HOL_ss addsimps mem_simps
       
   199          addcongs [ball_cong,bex_cong]
       
   200          setmksimps (mksimps mksimps_pairs);