1 (* Title: HOL/IOA/example/Multiset.ML |
|
2 ID: $Id$ |
|
3 Author: Tobias Nipkow & Konrad Slind |
|
4 Copyright 1994 TU Muenchen |
|
5 |
|
6 Axiomatic multisets. |
|
7 Should be done as a subtype and moved to a global place. |
|
8 *) |
|
9 |
|
10 goalw Multiset.thy [Multiset.count_def, Multiset.countm_empty_def] |
|
11 "count({|},x) = 0"; |
|
12 by (rtac refl 1); |
|
13 qed "count_empty"; |
|
14 |
|
15 goal Multiset.thy |
|
16 "count(addm(M,x),y) = if(y=x,Suc(count(M,y)),count(M,y))"; |
|
17 by (asm_simp_tac (arith_ss addsimps |
|
18 [Multiset.count_def,Multiset.countm_nonempty_def] |
|
19 setloop (split_tac [expand_if])) 1); |
|
20 qed "count_addm_simp"; |
|
21 |
|
22 goal Multiset.thy "count(M,y) <= count(addm(M,x),y)"; |
|
23 by (simp_tac (arith_ss addsimps [count_addm_simp] |
|
24 setloop (split_tac [expand_if])) 1); |
|
25 by (rtac impI 1); |
|
26 by (rtac (le_refl RS (leq_suc RS mp)) 1); |
|
27 qed "count_leq_addm"; |
|
28 |
|
29 goalw Multiset.thy [Multiset.count_def] |
|
30 "count(delm(M,x),y) = if(y=x,pred(count(M,y)),count(M,y))"; |
|
31 by (res_inst_tac [("M","M")] Multiset.induction 1); |
|
32 by (asm_simp_tac (arith_ss |
|
33 addsimps [Multiset.delm_empty_def,Multiset.countm_empty_def] |
|
34 setloop (split_tac [expand_if])) 1); |
|
35 by (asm_full_simp_tac (arith_ss |
|
36 addsimps [Multiset.delm_nonempty_def, |
|
37 Multiset.countm_nonempty_def] |
|
38 setloop (split_tac [expand_if])) 1); |
|
39 by (safe_tac HOL_cs); |
|
40 by (asm_full_simp_tac HOL_ss 1); |
|
41 qed "count_delm_simp"; |
|
42 |
|
43 goal Multiset.thy "!!M. (!x. P(x) --> Q(x)) ==> (countm(M,P) <= countm(M,Q))"; |
|
44 by (res_inst_tac [("M","M")] Multiset.induction 1); |
|
45 by (simp_tac (arith_ss addsimps [Multiset.countm_empty_def]) 1); |
|
46 by (simp_tac (arith_ss addsimps[Multiset.countm_nonempty_def]) 1); |
|
47 by (etac (less_eq_add_cong RS mp RS mp) 1); |
|
48 by (asm_full_simp_tac (arith_ss addsimps [le_eq_less_or_eq] |
|
49 setloop (split_tac [expand_if])) 1); |
|
50 qed "countm_props"; |
|
51 |
|
52 goal Multiset.thy "!!P. ~P(obj) ==> countm(M,P) = countm(delm(M,obj),P)"; |
|
53 by (res_inst_tac [("M","M")] Multiset.induction 1); |
|
54 by (simp_tac (arith_ss addsimps [Multiset.delm_empty_def, |
|
55 Multiset.countm_empty_def]) 1); |
|
56 by (asm_simp_tac (arith_ss addsimps[Multiset.countm_nonempty_def, |
|
57 Multiset.delm_nonempty_def] |
|
58 setloop (split_tac [expand_if])) 1); |
|
59 qed "countm_spurious_delm"; |
|
60 |
|
61 |
|
62 goal Multiset.thy "!!P. P(x) ==> 0<count(M,x) --> 0<countm(M,P)"; |
|
63 by (res_inst_tac [("M","M")] Multiset.induction 1); |
|
64 by (simp_tac (arith_ss addsimps |
|
65 [Multiset.delm_empty_def,Multiset.count_def, |
|
66 Multiset.countm_empty_def]) 1); |
|
67 by (asm_simp_tac (arith_ss addsimps |
|
68 [Multiset.count_def,Multiset.delm_nonempty_def, |
|
69 Multiset.countm_nonempty_def] |
|
70 setloop (split_tac [expand_if])) 1); |
|
71 val pos_count_imp_pos_countm = store_thm("pos_count_imp_pos_countm", standard(result() RS mp)); |
|
72 |
|
73 goal Multiset.thy |
|
74 "!!P. P(x) ==> 0<count(M,x) --> countm(delm(M,x),P) = pred(countm(M,P))"; |
|
75 by (res_inst_tac [("M","M")] Multiset.induction 1); |
|
76 by (simp_tac (arith_ss addsimps |
|
77 [Multiset.delm_empty_def, |
|
78 Multiset.countm_empty_def]) 1); |
|
79 by (asm_simp_tac (arith_ss addsimps |
|
80 [eq_sym_conv,count_addm_simp,Multiset.delm_nonempty_def, |
|
81 Multiset.countm_nonempty_def,pos_count_imp_pos_countm, |
|
82 suc_pred_id] |
|
83 setloop (split_tac [expand_if])) 1); |
|
84 qed "countm_done_delm"; |
|