Set.ML
changeset 252 a4dc62a46ee4
parent 251 f04b33ce250f
child 253 132634d24019
equal deleted inserted replaced
251:f04b33ce250f 252:a4dc62a46ee4
     1 (*  Title: 	HOL/set
       
     2     ID:         $Id$
       
     3     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
       
     4     Copyright   1991  University of Cambridge
       
     5 
       
     6 For set.thy.  Set theory for higher-order logic.  A set is simply a predicate.
       
     7 *)
       
     8 
       
     9 open Set;
       
    10 
       
    11 val [prem] = goal Set.thy "[| P(a) |] ==> a : {x.P(x)}";
       
    12 by (rtac (mem_Collect_eq RS ssubst) 1);
       
    13 by (rtac prem 1);
       
    14 qed "CollectI";
       
    15 
       
    16 val prems = goal Set.thy "[| a : {x.P(x)} |] ==> P(a)";
       
    17 by (resolve_tac (prems RL [mem_Collect_eq  RS subst]) 1);
       
    18 qed "CollectD";
       
    19 
       
    20 val [prem] = goal Set.thy "[| !!x. (x:A) = (x:B) |] ==> A = B";
       
    21 by (rtac (prem RS ext RS arg_cong RS box_equals) 1);
       
    22 by (rtac Collect_mem_eq 1);
       
    23 by (rtac Collect_mem_eq 1);
       
    24 qed "set_ext";
       
    25 
       
    26 val [prem] = goal Set.thy "[| !!x. P(x)=Q(x) |] ==> {x. P(x)} = {x. Q(x)}";
       
    27 by (rtac (prem RS ext RS arg_cong) 1);
       
    28 qed "Collect_cong";
       
    29 
       
    30 val CollectE = make_elim CollectD;
       
    31 
       
    32 (*** Bounded quantifiers ***)
       
    33 
       
    34 val prems = goalw Set.thy [Ball_def]
       
    35     "[| !!x. x:A ==> P(x) |] ==> ! x:A. P(x)";
       
    36 by (REPEAT (ares_tac (prems @ [allI,impI]) 1));
       
    37 qed "ballI";
       
    38 
       
    39 val [major,minor] = goalw Set.thy [Ball_def]
       
    40     "[| ! x:A. P(x);  x:A |] ==> P(x)";
       
    41 by (rtac (minor RS (major RS spec RS mp)) 1);
       
    42 qed "bspec";
       
    43 
       
    44 val major::prems = goalw Set.thy [Ball_def]
       
    45     "[| ! x:A. P(x);  P(x) ==> Q;  x~:A ==> Q |] ==> Q";
       
    46 by (rtac (major RS spec RS impCE) 1);
       
    47 by (REPEAT (eresolve_tac prems 1));
       
    48 qed "ballE";
       
    49 
       
    50 (*Takes assumptions ! x:A.P(x) and a:A; creates assumption P(a)*)
       
    51 fun ball_tac i = etac ballE i THEN contr_tac (i+1);
       
    52 
       
    53 val prems = goalw Set.thy [Bex_def]
       
    54     "[| P(x);  x:A |] ==> ? x:A. P(x)";
       
    55 by (REPEAT (ares_tac (prems @ [exI,conjI]) 1));
       
    56 qed "bexI";
       
    57 
       
    58 qed_goal "bexCI" Set.thy 
       
    59    "[| ! x:A. ~P(x) ==> P(a);  a:A |] ==> ? x:A.P(x)"
       
    60  (fn prems=>
       
    61   [ (rtac classical 1),
       
    62     (REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1))  ]);
       
    63 
       
    64 val major::prems = goalw Set.thy [Bex_def]
       
    65     "[| ? x:A. P(x);  !!x. [| x:A; P(x) |] ==> Q  |] ==> Q";
       
    66 by (rtac (major RS exE) 1);
       
    67 by (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1));
       
    68 qed "bexE";
       
    69 
       
    70 (*Trival rewrite rule;   (! x:A.P)=P holds only if A is nonempty!*)
       
    71 val prems = goal Set.thy
       
    72     "(! x:A. True) = True";
       
    73 by (REPEAT (ares_tac [TrueI,ballI,iffI] 1));
       
    74 qed "ball_rew";
       
    75 
       
    76 (** Congruence rules **)
       
    77 
       
    78 val prems = goal Set.thy
       
    79     "[| A=B;  !!x. x:B ==> P(x) = Q(x) |] ==> \
       
    80 \    (! x:A. P(x)) = (! x:B. Q(x))";
       
    81 by (resolve_tac (prems RL [ssubst]) 1);
       
    82 by (REPEAT (ares_tac [ballI,iffI] 1
       
    83      ORELSE eresolve_tac ([make_elim bspec, mp] @ (prems RL [iffE])) 1));
       
    84 qed "ball_cong";
       
    85 
       
    86 val prems = goal Set.thy
       
    87     "[| A=B;  !!x. x:B ==> P(x) = Q(x) |] ==> \
       
    88 \    (? x:A. P(x)) = (? x:B. Q(x))";
       
    89 by (resolve_tac (prems RL [ssubst]) 1);
       
    90 by (REPEAT (etac bexE 1
       
    91      ORELSE ares_tac ([bexI,iffI] @ (prems RL [iffD1,iffD2])) 1));
       
    92 qed "bex_cong";
       
    93 
       
    94 (*** Subsets ***)
       
    95 
       
    96 val prems = goalw Set.thy [subset_def] "(!!x.x:A ==> x:B) ==> A <= B";
       
    97 by (REPEAT (ares_tac (prems @ [ballI]) 1));
       
    98 qed "subsetI";
       
    99 
       
   100 (*Rule in Modus Ponens style*)
       
   101 val major::prems = goalw Set.thy [subset_def] "[| A <= B;  c:A |] ==> c:B";
       
   102 by (rtac (major RS bspec) 1);
       
   103 by (resolve_tac prems 1);
       
   104 qed "subsetD";
       
   105 
       
   106 (*The same, with reversed premises for use with etac -- cf rev_mp*)
       
   107 qed_goal "rev_subsetD" Set.thy "[| c:A;  A <= B |] ==> c:B"
       
   108  (fn prems=>  [ (REPEAT (resolve_tac (prems@[subsetD]) 1)) ]);
       
   109 
       
   110 (*Classical elimination rule*)
       
   111 val major::prems = goalw Set.thy [subset_def] 
       
   112     "[| A <= B;  c~:A ==> P;  c:B ==> P |] ==> P";
       
   113 by (rtac (major RS ballE) 1);
       
   114 by (REPEAT (eresolve_tac prems 1));
       
   115 qed "subsetCE";
       
   116 
       
   117 (*Takes assumptions A<=B; c:A and creates the assumption c:B *)
       
   118 fun set_mp_tac i = etac subsetCE i  THEN  mp_tac i;
       
   119 
       
   120 qed_goal "subset_refl" Set.thy "A <= (A::'a set)"
       
   121  (fn _=> [ (REPEAT (ares_tac [subsetI] 1)) ]);
       
   122 
       
   123 val prems = goal Set.thy "[| A<=B;  B<=C |] ==> A<=(C::'a set)";
       
   124 by (cut_facts_tac prems 1);
       
   125 by (REPEAT (ares_tac [subsetI] 1 ORELSE set_mp_tac 1));
       
   126 qed "subset_trans";
       
   127 
       
   128 
       
   129 (*** Equality ***)
       
   130 
       
   131 (*Anti-symmetry of the subset relation*)
       
   132 val prems = goal Set.thy "[| A <= B;  B <= A |] ==> A = (B::'a set)";
       
   133 by (rtac (iffI RS set_ext) 1);
       
   134 by (REPEAT (ares_tac (prems RL [subsetD]) 1));
       
   135 qed "subset_antisym";
       
   136 val equalityI = subset_antisym;
       
   137 
       
   138 (* Equality rules from ZF set theory -- are they appropriate here? *)
       
   139 val prems = goal Set.thy "A = B ==> A<=(B::'a set)";
       
   140 by (resolve_tac (prems RL [subst]) 1);
       
   141 by (rtac subset_refl 1);
       
   142 qed "equalityD1";
       
   143 
       
   144 val prems = goal Set.thy "A = B ==> B<=(A::'a set)";
       
   145 by (resolve_tac (prems RL [subst]) 1);
       
   146 by (rtac subset_refl 1);
       
   147 qed "equalityD2";
       
   148 
       
   149 val prems = goal Set.thy
       
   150     "[| A = B;  [| A<=B; B<=(A::'a set) |] ==> P |]  ==>  P";
       
   151 by (resolve_tac prems 1);
       
   152 by (REPEAT (resolve_tac (prems RL [equalityD1,equalityD2]) 1));
       
   153 qed "equalityE";
       
   154 
       
   155 val major::prems = goal Set.thy
       
   156     "[| A = B;  [| c:A; c:B |] ==> P;  [| c~:A; c~:B |] ==> P |]  ==>  P";
       
   157 by (rtac (major RS equalityE) 1);
       
   158 by (REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1));
       
   159 qed "equalityCE";
       
   160 
       
   161 (*Lemma for creating induction formulae -- for "pattern matching" on p
       
   162   To make the induction hypotheses usable, apply "spec" or "bspec" to
       
   163   put universal quantifiers over the free variables in p. *)
       
   164 val prems = goal Set.thy 
       
   165     "[| p:A;  !!z. z:A ==> p=z --> R |] ==> R";
       
   166 by (rtac mp 1);
       
   167 by (REPEAT (resolve_tac (refl::prems) 1));
       
   168 qed "setup_induction";
       
   169 
       
   170 
       
   171 (*** Set complement -- Compl ***)
       
   172 
       
   173 val prems = goalw Set.thy [Compl_def]
       
   174     "[| c:A ==> False |] ==> c : Compl(A)";
       
   175 by (REPEAT (ares_tac (prems @ [CollectI,notI]) 1));
       
   176 qed "ComplI";
       
   177 
       
   178 (*This form, with negated conclusion, works well with the Classical prover.
       
   179   Negated assumptions behave like formulae on the right side of the notional
       
   180   turnstile...*)
       
   181 val major::prems = goalw Set.thy [Compl_def]
       
   182     "[| c : Compl(A) |] ==> c~:A";
       
   183 by (rtac (major RS CollectD) 1);
       
   184 qed "ComplD";
       
   185 
       
   186 val ComplE = make_elim ComplD;
       
   187 
       
   188 
       
   189 (*** Binary union -- Un ***)
       
   190 
       
   191 val prems = goalw Set.thy [Un_def] "c:A ==> c : A Un B";
       
   192 by (REPEAT (resolve_tac (prems @ [CollectI,disjI1]) 1));
       
   193 qed "UnI1";
       
   194 
       
   195 val prems = goalw Set.thy [Un_def] "c:B ==> c : A Un B";
       
   196 by (REPEAT (resolve_tac (prems @ [CollectI,disjI2]) 1));
       
   197 qed "UnI2";
       
   198 
       
   199 (*Classical introduction rule: no commitment to A vs B*)
       
   200 qed_goal "UnCI" Set.thy "(c~:B ==> c:A) ==> c : A Un B"
       
   201  (fn prems=>
       
   202   [ (rtac classical 1),
       
   203     (REPEAT (ares_tac (prems@[UnI1,notI]) 1)),
       
   204     (REPEAT (ares_tac (prems@[UnI2,notE]) 1)) ]);
       
   205 
       
   206 val major::prems = goalw Set.thy [Un_def]
       
   207     "[| c : A Un B;  c:A ==> P;  c:B ==> P |] ==> P";
       
   208 by (rtac (major RS CollectD RS disjE) 1);
       
   209 by (REPEAT (eresolve_tac prems 1));
       
   210 qed "UnE";
       
   211 
       
   212 
       
   213 (*** Binary intersection -- Int ***)
       
   214 
       
   215 val prems = goalw Set.thy [Int_def]
       
   216     "[| c:A;  c:B |] ==> c : A Int B";
       
   217 by (REPEAT (resolve_tac (prems @ [CollectI,conjI]) 1));
       
   218 qed "IntI";
       
   219 
       
   220 val [major] = goalw Set.thy [Int_def] "c : A Int B ==> c:A";
       
   221 by (rtac (major RS CollectD RS conjunct1) 1);
       
   222 qed "IntD1";
       
   223 
       
   224 val [major] = goalw Set.thy [Int_def] "c : A Int B ==> c:B";
       
   225 by (rtac (major RS CollectD RS conjunct2) 1);
       
   226 qed "IntD2";
       
   227 
       
   228 val [major,minor] = goal Set.thy
       
   229     "[| c : A Int B;  [| c:A; c:B |] ==> P |] ==> P";
       
   230 by (rtac minor 1);
       
   231 by (rtac (major RS IntD1) 1);
       
   232 by (rtac (major RS IntD2) 1);
       
   233 qed "IntE";
       
   234 
       
   235 
       
   236 (*** Set difference ***)
       
   237 
       
   238 qed_goalw "DiffI" Set.thy [set_diff_def]
       
   239     "[| c : A;  c ~: B |] ==> c : A - B"
       
   240  (fn prems=> [ (REPEAT (resolve_tac (prems @ [CollectI,conjI]) 1)) ]);
       
   241 
       
   242 qed_goalw "DiffD1" Set.thy [set_diff_def]
       
   243     "c : A - B ==> c : A"
       
   244  (fn [major]=> [ (rtac (major RS CollectD RS conjunct1) 1) ]);
       
   245 
       
   246 qed_goalw "DiffD2" Set.thy [set_diff_def]
       
   247     "[| c : A - B;  c : B |] ==> P"
       
   248  (fn [major,minor]=>
       
   249      [rtac (minor RS (major RS CollectD RS conjunct2 RS notE)) 1]);
       
   250 
       
   251 qed_goal "DiffE" Set.thy
       
   252     "[| c : A - B;  [| c:A; c~:B |] ==> P |] ==> P"
       
   253  (fn prems=>
       
   254   [ (resolve_tac prems 1),
       
   255     (REPEAT (ares_tac (prems RL [DiffD1, DiffD2 RS notI]) 1)) ]);
       
   256 
       
   257 qed_goal "Diff_iff" Set.thy "(c : A-B) = (c:A & c~:B)"
       
   258  (fn _ => [ (fast_tac (HOL_cs addSIs [DiffI] addSEs [DiffE]) 1) ]);
       
   259 
       
   260 
       
   261 (*** The empty set -- {} ***)
       
   262 
       
   263 qed_goalw "emptyE" Set.thy [empty_def] "a:{} ==> P"
       
   264  (fn [prem] => [rtac (prem RS CollectD RS FalseE) 1]);
       
   265 
       
   266 qed_goal "empty_subsetI" Set.thy "{} <= A"
       
   267  (fn _ => [ (REPEAT (ares_tac [equalityI,subsetI,emptyE] 1)) ]);
       
   268 
       
   269 qed_goal "equals0I" Set.thy "[| !!y. y:A ==> False |] ==> A={}"
       
   270  (fn prems=>
       
   271   [ (REPEAT (ares_tac (prems@[empty_subsetI,subsetI,equalityI]) 1 
       
   272       ORELSE eresolve_tac (prems RL [FalseE]) 1)) ]);
       
   273 
       
   274 qed_goal "equals0D" Set.thy "[| A={};  a:A |] ==> P"
       
   275  (fn [major,minor]=>
       
   276   [ (rtac (minor RS (major RS equalityD1 RS subsetD RS emptyE)) 1) ]);
       
   277 
       
   278 
       
   279 (*** Augmenting a set -- insert ***)
       
   280 
       
   281 qed_goalw "insertI1" Set.thy [insert_def] "a : insert(a,B)"
       
   282  (fn _ => [rtac (CollectI RS UnI1) 1, rtac refl 1]);
       
   283 
       
   284 qed_goalw "insertI2" Set.thy [insert_def] "a : B ==> a : insert(b,B)"
       
   285  (fn [prem]=> [ (rtac (prem RS UnI2) 1) ]);
       
   286 
       
   287 qed_goalw "insertE" Set.thy [insert_def]
       
   288     "[| a : insert(b,A);  a=b ==> P;  a:A ==> P |] ==> P"
       
   289  (fn major::prems=>
       
   290   [ (rtac (major RS UnE) 1),
       
   291     (REPEAT (eresolve_tac (prems @ [CollectE]) 1)) ]);
       
   292 
       
   293 qed_goal "insert_iff" Set.thy "a : insert(b,A) = (a=b | a:A)"
       
   294  (fn _ => [fast_tac (HOL_cs addIs [insertI1,insertI2] addSEs [insertE]) 1]);
       
   295 
       
   296 (*Classical introduction rule*)
       
   297 qed_goal "insertCI" Set.thy "(a~:B ==> a=b) ==> a: insert(b,B)"
       
   298  (fn [prem]=>
       
   299   [ (rtac (disjCI RS (insert_iff RS iffD2)) 1),
       
   300     (etac prem 1) ]);
       
   301 
       
   302 (*** Singletons, using insert ***)
       
   303 
       
   304 qed_goal "singletonI" Set.thy "a : {a}"
       
   305  (fn _=> [ (rtac insertI1 1) ]);
       
   306 
       
   307 qed_goal "singletonE" Set.thy "[| a: {b};  a=b ==> P |] ==> P"
       
   308  (fn major::prems=>
       
   309   [ (rtac (major RS insertE) 1),
       
   310     (REPEAT (eresolve_tac (prems @ [emptyE]) 1)) ]);
       
   311 
       
   312 goalw Set.thy [insert_def] "!!a. b : {a} ==> b=a";
       
   313 by(fast_tac (HOL_cs addSEs [emptyE,CollectE,UnE]) 1);
       
   314 qed "singletonD";
       
   315 
       
   316 val singletonE = make_elim singletonD;
       
   317 
       
   318 val [major] = goal Set.thy "{a}={b} ==> a=b";
       
   319 by (rtac (major RS equalityD1 RS subsetD RS singletonD) 1);
       
   320 by (rtac singletonI 1);
       
   321 qed "singleton_inject";
       
   322 
       
   323 (*** Unions of families -- UNION x:A. B(x) is Union(B``A)  ***)
       
   324 
       
   325 (*The order of the premises presupposes that A is rigid; b may be flexible*)
       
   326 val prems = goalw Set.thy [UNION_def]
       
   327     "[| a:A;  b: B(a) |] ==> b: (UN x:A. B(x))";
       
   328 by (REPEAT (resolve_tac (prems @ [bexI,CollectI]) 1));
       
   329 qed "UN_I";
       
   330 
       
   331 val major::prems = goalw Set.thy [UNION_def]
       
   332     "[| b : (UN x:A. B(x));  !!x.[| x:A;  b: B(x) |] ==> R |] ==> R";
       
   333 by (rtac (major RS CollectD RS bexE) 1);
       
   334 by (REPEAT (ares_tac prems 1));
       
   335 qed "UN_E";
       
   336 
       
   337 val prems = goal Set.thy
       
   338     "[| A=B;  !!x. x:B ==> C(x) = D(x) |] ==> \
       
   339 \    (UN x:A. C(x)) = (UN x:B. D(x))";
       
   340 by (REPEAT (etac UN_E 1
       
   341      ORELSE ares_tac ([UN_I,equalityI,subsetI] @ 
       
   342 		      (prems RL [equalityD1,equalityD2] RL [subsetD])) 1));
       
   343 qed "UN_cong";
       
   344 
       
   345 
       
   346 (*** Intersections of families -- INTER x:A. B(x) is Inter(B``A) *)
       
   347 
       
   348 val prems = goalw Set.thy [INTER_def]
       
   349     "(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))";
       
   350 by (REPEAT (ares_tac ([CollectI,ballI] @ prems) 1));
       
   351 qed "INT_I";
       
   352 
       
   353 val major::prems = goalw Set.thy [INTER_def]
       
   354     "[| b : (INT x:A. B(x));  a:A |] ==> b: B(a)";
       
   355 by (rtac (major RS CollectD RS bspec) 1);
       
   356 by (resolve_tac prems 1);
       
   357 qed "INT_D";
       
   358 
       
   359 (*"Classical" elimination -- by the Excluded Middle on a:A *)
       
   360 val major::prems = goalw Set.thy [INTER_def]
       
   361     "[| b : (INT x:A. B(x));  b: B(a) ==> R;  a~:A ==> R |] ==> R";
       
   362 by (rtac (major RS CollectD RS ballE) 1);
       
   363 by (REPEAT (eresolve_tac prems 1));
       
   364 qed "INT_E";
       
   365 
       
   366 val prems = goal Set.thy
       
   367     "[| A=B;  !!x. x:B ==> C(x) = D(x) |] ==> \
       
   368 \    (INT x:A. C(x)) = (INT x:B. D(x))";
       
   369 by (REPEAT_FIRST (resolve_tac [INT_I,equalityI,subsetI]));
       
   370 by (REPEAT (dtac INT_D 1
       
   371      ORELSE ares_tac (prems RL [equalityD1,equalityD2] RL [subsetD]) 1));
       
   372 qed "INT_cong";
       
   373 
       
   374 
       
   375 (*** Unions over a type; UNION1(B) = Union(range(B)) ***)
       
   376 
       
   377 (*The order of the premises presupposes that A is rigid; b may be flexible*)
       
   378 val prems = goalw Set.thy [UNION1_def]
       
   379     "b: B(x) ==> b: (UN x. B(x))";
       
   380 by (REPEAT (resolve_tac (prems @ [TrueI, CollectI RS UN_I]) 1));
       
   381 qed "UN1_I";
       
   382 
       
   383 val major::prems = goalw Set.thy [UNION1_def]
       
   384     "[| b : (UN x. B(x));  !!x. b: B(x) ==> R |] ==> R";
       
   385 by (rtac (major RS UN_E) 1);
       
   386 by (REPEAT (ares_tac prems 1));
       
   387 qed "UN1_E";
       
   388 
       
   389 
       
   390 (*** Intersections over a type; INTER1(B) = Inter(range(B)) *)
       
   391 
       
   392 val prems = goalw Set.thy [INTER1_def]
       
   393     "(!!x. b: B(x)) ==> b : (INT x. B(x))";
       
   394 by (REPEAT (ares_tac (INT_I::prems) 1));
       
   395 qed "INT1_I";
       
   396 
       
   397 val [major] = goalw Set.thy [INTER1_def]
       
   398     "b : (INT x. B(x)) ==> b: B(a)";
       
   399 by (rtac (TrueI RS (CollectI RS (major RS INT_D))) 1);
       
   400 qed "INT1_D";
       
   401 
       
   402 (*** Unions ***)
       
   403 
       
   404 (*The order of the premises presupposes that C is rigid; A may be flexible*)
       
   405 val prems = goalw Set.thy [Union_def]
       
   406     "[| X:C;  A:X |] ==> A : Union(C)";
       
   407 by (REPEAT (resolve_tac (prems @ [UN_I]) 1));
       
   408 qed "UnionI";
       
   409 
       
   410 val major::prems = goalw Set.thy [Union_def]
       
   411     "[| A : Union(C);  !!X.[| A:X;  X:C |] ==> R |] ==> R";
       
   412 by (rtac (major RS UN_E) 1);
       
   413 by (REPEAT (ares_tac prems 1));
       
   414 qed "UnionE";
       
   415 
       
   416 (*** Inter ***)
       
   417 
       
   418 val prems = goalw Set.thy [Inter_def]
       
   419     "[| !!X. X:C ==> A:X |] ==> A : Inter(C)";
       
   420 by (REPEAT (ares_tac ([INT_I] @ prems) 1));
       
   421 qed "InterI";
       
   422 
       
   423 (*A "destruct" rule -- every X in C contains A as an element, but
       
   424   A:X can hold when X:C does not!  This rule is analogous to "spec". *)
       
   425 val major::prems = goalw Set.thy [Inter_def]
       
   426     "[| A : Inter(C);  X:C |] ==> A:X";
       
   427 by (rtac (major RS INT_D) 1);
       
   428 by (resolve_tac prems 1);
       
   429 qed "InterD";
       
   430 
       
   431 (*"Classical" elimination rule -- does not require proving X:C *)
       
   432 val major::prems = goalw Set.thy [Inter_def]
       
   433     "[| A : Inter(C);  A:X ==> R;  X~:C ==> R |] ==> R";
       
   434 by (rtac (major RS INT_E) 1);
       
   435 by (REPEAT (eresolve_tac prems 1));
       
   436 qed "InterE";
       
   437 
       
   438 (*** Powerset ***)
       
   439 
       
   440 qed_goalw "PowI" Set.thy [Pow_def] "!!A B. A <= B ==> A : Pow(B)"
       
   441  (fn _ => [ (etac CollectI 1) ]);
       
   442 
       
   443 qed_goalw "PowD" Set.thy [Pow_def] "!!A B. A : Pow(B)  ==>  A<=B"
       
   444  (fn _=> [ (etac CollectD 1) ]);
       
   445 
       
   446 val Pow_bottom = empty_subsetI RS PowI;        (* {}: Pow(B) *)
       
   447 val Pow_top = subset_refl RS PowI;             (* A : Pow(A) *)