Subst/Subst.ML
changeset 252 a4dc62a46ee4
parent 251 f04b33ce250f
child 253 132634d24019
equal deleted inserted replaced
251:f04b33ce250f 252:a4dc62a46ee4
     1 (*  Title: 	Substitutions/subst.ML
       
     2     Author: 	Martin Coen, Cambridge University Computer Laboratory
       
     3     Copyright   1993  University of Cambridge
       
     4 
       
     5 For subst.thy.  
       
     6 *)
       
     7 
       
     8 open Subst;
       
     9 
       
    10 (***********)
       
    11 
       
    12 val subst_defs = [subst_def,comp_def,sdom_def];
       
    13 
       
    14 val raw_subst_ss = utlemmas_ss addsimps al_rews;
       
    15 
       
    16 local fun mk_thm s = prove_goalw Subst.thy subst_defs s 
       
    17                                  (fn _ => [simp_tac raw_subst_ss 1])
       
    18 in val subst_rews = map mk_thm 
       
    19 ["Const(c) <| al = Const(c)",
       
    20  "Comb(t,u) <| al = Comb(t <| al, u <| al)",
       
    21  "[] <> bl = bl",
       
    22  "<a,b>#al <> bl = <a,b <| bl> # (al <> bl)",
       
    23  "sdom([]) = {}",
       
    24  "sdom(<a,b>#al) = if(Var(a)=b,sdom(al) Int Compl({a}),sdom(al) Un {a})"
       
    25 ];
       
    26    (* This rewrite isn't always desired *)
       
    27    val Var_subst = mk_thm "Var(x) <| al = assoc(x,Var(x),al)";
       
    28 end;
       
    29 
       
    30 val subst_ss = raw_subst_ss addsimps subst_rews;
       
    31 
       
    32 (**** Substitutions ****)
       
    33 
       
    34 goal Subst.thy "t <| [] = t";
       
    35 by (uterm_ind_tac "t" 1);
       
    36 by (ALLGOALS (asm_simp_tac (subst_ss addsimps [Var_subst])));
       
    37 qed "subst_Nil";
       
    38 
       
    39 goal Subst.thy "t <: u --> t <| s <: u <| s";
       
    40 by (uterm_ind_tac "u" 1);
       
    41 by (ALLGOALS (asm_simp_tac subst_ss));
       
    42 val subst_mono  = store_thm("subst_mono", result() RS mp);
       
    43 
       
    44 goal Subst.thy  "~ (Var(v) <: t) --> t <| <v,t <| s>#s = t <| s";
       
    45 by (imp_excluded_middle_tac "t = Var(v)" 1);
       
    46 by (res_inst_tac [("P",
       
    47     "%x.~x=Var(v) --> ~(Var(v) <: x) --> x <| <v,t<|s>#s=x<|s")]
       
    48     uterm_induct 2);
       
    49 by (ALLGOALS (simp_tac (subst_ss addsimps [Var_subst])));
       
    50 by (fast_tac HOL_cs 1);
       
    51 val Var_not_occs  = store_thm("Var_not_occs", result() RS mp);
       
    52 
       
    53 goal Subst.thy
       
    54     "(t <|r = t <|s) = (! v.v : vars_of(t) --> Var(v) <|r = Var(v) <|s)";
       
    55 by (uterm_ind_tac "t" 1);
       
    56 by (REPEAT (etac rev_mp 3));
       
    57 by (ALLGOALS (asm_simp_tac subst_ss));
       
    58 by (ALLGOALS (fast_tac HOL_cs));
       
    59 qed "agreement";
       
    60 
       
    61 goal Subst.thy   "~ v: vars_of(t) --> t <| <v,u>#s = t <| s";
       
    62 by(simp_tac(subst_ss addsimps [agreement,Var_subst]
       
    63                      setloop (split_tac [expand_if])) 1);
       
    64 val repl_invariance  = store_thm("repl_invariance", result() RS mp);
       
    65 
       
    66 val asms = goal Subst.thy 
       
    67      "v : vars_of(t) --> w : vars_of(t <| <v,Var(w)>#s)";
       
    68 by (uterm_ind_tac "t" 1);
       
    69 by (ALLGOALS (asm_simp_tac (subst_ss addsimps [Var_subst])));
       
    70 val Var_in_subst  = store_thm("Var_in_subst", result() RS mp);
       
    71 
       
    72 (**** Equality between Substitutions ****)
       
    73 
       
    74 goalw Subst.thy [subst_eq_def] "r =s= s = (! t.t <| r = t <| s)";
       
    75 by (simp_tac subst_ss 1);
       
    76 qed "subst_eq_iff";
       
    77 
       
    78 local fun mk_thm s = prove_goal Subst.thy s
       
    79                   (fn prems => [cut_facts_tac prems 1,
       
    80                                 REPEAT (etac rev_mp 1),
       
    81                                 simp_tac (subst_ss addsimps [subst_eq_iff]) 1])
       
    82 in 
       
    83   val subst_refl      = mk_thm "r = s ==> r =s= s";
       
    84   val subst_sym       = mk_thm "r =s= s ==> s =s= r";
       
    85   val subst_trans     = mk_thm "[| q =s= r; r =s= s |] ==> q =s= s";
       
    86 end;
       
    87 
       
    88 val eq::prems = goalw Subst.thy [subst_eq_def] 
       
    89     "[| r =s= s; P(t <| r,u <| r) |] ==> P(t <| s,u <| s)";
       
    90 by (resolve_tac [eq RS spec RS subst] 1);
       
    91 by (resolve_tac (prems RL [eq RS spec RS subst]) 1);
       
    92 qed "subst_subst2";
       
    93 
       
    94 val ssubst_subst2 = subst_sym RS subst_subst2;
       
    95 
       
    96 (**** Composition of Substitutions ****)
       
    97 
       
    98 goal Subst.thy "s <> [] = s";
       
    99 by (alist_ind_tac "s" 1);
       
   100 by (ALLGOALS (asm_simp_tac (subst_ss addsimps [subst_Nil])));
       
   101 qed "comp_Nil";
       
   102 
       
   103 goal Subst.thy "(t <| r <> s) = (t <| r <| s)";
       
   104 by (uterm_ind_tac "t" 1);
       
   105 by (ALLGOALS (asm_simp_tac (subst_ss addsimps [Var_subst])));
       
   106 by (alist_ind_tac "r" 1);
       
   107 by (ALLGOALS (asm_simp_tac (subst_ss addsimps [Var_subst,subst_Nil]
       
   108                                      setloop (split_tac [expand_if]))));
       
   109 qed "subst_comp";
       
   110 
       
   111 goal Subst.thy "q <> r <> s =s= q <> (r <> s)";
       
   112 by (simp_tac (subst_ss addsimps [subst_eq_iff,subst_comp]) 1);
       
   113 qed "comp_assoc";
       
   114 
       
   115 goal Subst.thy "<w,Var(w) <| s>#s =s= s"; 
       
   116 by (rtac (allI RS (subst_eq_iff RS iffD2)) 1);
       
   117 by (uterm_ind_tac "t" 1);
       
   118 by (REPEAT (etac rev_mp 3));
       
   119 by (ALLGOALS (simp_tac (subst_ss addsimps[Var_subst]
       
   120                                  setloop (split_tac [expand_if]))));
       
   121 qed "Cons_trivial";
       
   122 
       
   123 val [prem] = goal Subst.thy "q <> r =s= s ==>  t <| q <| r = t <| s";
       
   124 by (simp_tac (subst_ss addsimps [prem RS (subst_eq_iff RS iffD1),
       
   125 				subst_comp RS sym]) 1);
       
   126 qed "comp_subst_subst";
       
   127 
       
   128 (****  Domain and range of Substitutions ****)
       
   129 
       
   130 goal Subst.thy  "(v : sdom(s)) = (~ Var(v) <| s = Var(v))";
       
   131 by (alist_ind_tac "s" 1);
       
   132 by (ALLGOALS (asm_simp_tac (subst_ss addsimps [Var_subst]
       
   133                             setloop (split_tac[expand_if]))));
       
   134 by (fast_tac HOL_cs 1);
       
   135 qed "sdom_iff";
       
   136 
       
   137 goalw Subst.thy [srange_def]  
       
   138    "v : srange(s) = (? w.w : sdom(s) & v : vars_of(Var(w) <| s))";
       
   139 by (fast_tac set_cs 1);
       
   140 qed "srange_iff";
       
   141 
       
   142 goal Subst.thy  "(t <| s = t) = (sdom(s) Int vars_of(t) = {})";
       
   143 by (uterm_ind_tac "t" 1);
       
   144 by (REPEAT (etac rev_mp 3));
       
   145 by (ALLGOALS (simp_tac (subst_ss addsimps [sdom_iff,Var_subst])));
       
   146 by (ALLGOALS (fast_tac set_cs));
       
   147 qed "invariance";
       
   148 
       
   149 goal Subst.thy  "v : sdom(s) -->  ~v : srange(s) --> ~v : vars_of(t <| s)";
       
   150 by (uterm_ind_tac "t" 1);
       
   151 by (imp_excluded_middle_tac "x : sdom(s)" 1);
       
   152 by (ALLGOALS (asm_simp_tac (subst_ss addsimps [sdom_iff,srange_iff])));
       
   153 by (ALLGOALS (fast_tac set_cs));
       
   154 val Var_elim  = store_thm("Var_elim", result() RS mp RS mp);
       
   155 
       
   156 val asms = goal Subst.thy 
       
   157      "[| v : sdom(s); v : vars_of(t <| s) |] ==>  v : srange(s)";
       
   158 by (REPEAT (ares_tac (asms @ [Var_elim RS swap RS classical]) 1));
       
   159 qed "Var_elim2";
       
   160 
       
   161 goal Subst.thy  "v : vars_of(t <| s) --> v : srange(s) | v : vars_of(t)";
       
   162 by (uterm_ind_tac "t" 1);
       
   163 by (REPEAT_SOME (etac rev_mp ));
       
   164 by (ALLGOALS (simp_tac (subst_ss addsimps [sdom_iff,srange_iff])));
       
   165 by (REPEAT (step_tac (set_cs addIs [vars_var_iff RS iffD1 RS sym]) 1));
       
   166 by (etac notE 1);
       
   167 by (etac subst 1);
       
   168 by (ALLGOALS (fast_tac set_cs));
       
   169 val Var_intro  = store_thm("Var_intro", result() RS mp);
       
   170 
       
   171 goal Subst.thy
       
   172     "v : srange(s) --> (? w.w : sdom(s) & v : vars_of(Var(w) <| s))";
       
   173 by (simp_tac (subst_ss addsimps [srange_iff]) 1);
       
   174 val srangeE  = store_thm("srangeE", make_elim (result() RS mp));
       
   175 
       
   176 val asms = goal Subst.thy
       
   177    "sdom(s) Int srange(s) = {} = (! t.sdom(s) Int vars_of(t <| s) = {})";
       
   178 by (simp_tac subst_ss 1);
       
   179 by (fast_tac (set_cs addIs [Var_elim2] addEs [srangeE]) 1);
       
   180 qed "dom_range_disjoint";
       
   181 
       
   182 val asms = goal Subst.thy "~ u <| s = u --> (? x.x : sdom(s))";
       
   183 by (simp_tac (subst_ss addsimps [invariance]) 1);
       
   184 by (fast_tac set_cs 1);
       
   185 val subst_not_empty  = store_thm("subst_not_empty", result() RS mp);