WF.thy
changeset 252 a4dc62a46ee4
parent 251 f04b33ce250f
child 253 132634d24019
equal deleted inserted replaced
251:f04b33ce250f 252:a4dc62a46ee4
     1 (*  Title: 	HOL/wf.ML
       
     2     ID:         $Id$
       
     3     Author: 	Tobias Nipkow
       
     4     Copyright   1992  University of Cambridge
       
     5 
       
     6 Well-founded Recursion
       
     7 *)
       
     8 
       
     9 WF = Trancl +
       
    10 consts
       
    11    wf		:: "('a * 'a)set => bool"
       
    12    cut		:: "['a => 'b, ('a * 'a)set, 'a] => 'a => 'b"
       
    13    wftrec,wfrec	:: "[('a * 'a)set, 'a, ['a,'a=>'b]=>'b] => 'b"
       
    14    is_recfun	:: "[('a * 'a)set, 'a, ['a,'a=>'b]=>'b, 'a=>'b] => bool"
       
    15    the_recfun	:: "[('a * 'a)set, 'a, ['a,'a=>'b]=>'b] => 'a=>'b"
       
    16 
       
    17 defs
       
    18   wf_def  "wf(r) == (!P. (!x. (!y. <y,x>:r --> P(y)) --> P(x)) --> (!x.P(x)))"
       
    19   
       
    20   cut_def 	 "cut(f,r,x) == (%y. if(<y,x>:r, f(y), @z.True))"
       
    21 
       
    22   is_recfun_def  "is_recfun(r,a,H,f) == (f = cut(%x.H(x, cut(f,r,x)), r, a))"
       
    23 
       
    24   the_recfun_def "the_recfun(r,a,H) == (@f.is_recfun(r,a,H,f))"
       
    25 
       
    26   wftrec_def     "wftrec(r,a,H) == H(a, the_recfun(r,a,H))"
       
    27 
       
    28   (*version not requiring transitivity*)
       
    29   wfrec_def	"wfrec(r,a,H) == wftrec(trancl(r), a, %x f. H(x, cut(f,r,x)))"
       
    30 end