9 types |
9 types |
10 'a set |
10 'a set |
11 |
11 |
12 arities |
12 arities |
13 set :: (term) term |
13 set :: (term) term |
14 set :: (term) ord |
|
15 set :: (term) minus |
|
16 |
14 |
|
15 instance |
|
16 set :: (term) {ord, minus} |
17 |
17 |
18 consts |
18 consts |
19 |
19 "{}" :: "'a set" ("{}") |
20 (* Constants *) |
20 insert :: "['a, 'a set] => 'a set" |
21 |
|
22 Collect :: "('a => bool) => 'a set" (*comprehension*) |
21 Collect :: "('a => bool) => 'a set" (*comprehension*) |
23 Compl :: "('a set) => 'a set" (*complement*) |
22 Compl :: "('a set) => 'a set" (*complement*) |
24 Int :: "['a set, 'a set] => 'a set" (infixl 70) |
23 Int :: "['a set, 'a set] => 'a set" (infixl 70) |
25 Un :: "['a set, 'a set] => 'a set" (infixl 65) |
24 Un :: "['a set, 'a set] => 'a set" (infixl 65) |
26 UNION, INTER :: "['a set, 'a => 'b set] => 'b set" (*general*) |
25 UNION, INTER :: "['a set, 'a => 'b set] => 'b set" (*general*) |
27 UNION1 :: "['a => 'b set] => 'b set" (binder "UN " 10) |
26 UNION1 :: "['a => 'b set] => 'b set" (binder "UN " 10) |
28 INTER1 :: "['a => 'b set] => 'b set" (binder "INT " 10) |
27 INTER1 :: "['a => 'b set] => 'b set" (binder "INT " 10) |
29 Union, Inter :: "(('a set)set) => 'a set" (*of a set*) |
28 Union, Inter :: "(('a set)set) => 'a set" (*of a set*) |
30 Pow :: "'a set => 'a set set" (*powerset*) |
29 Pow :: "'a set => 'a set set" (*powerset*) |
31 range :: "('a => 'b) => 'b set" (*of function*) |
30 range :: "('a => 'b) => 'b set" (*of function*) |
32 Ball, Bex :: "['a set, 'a => bool] => bool" (*bounded quantifiers*) |
31 Ball, Bex :: "['a set, 'a => bool] => bool" (*bounded quantifiers*) |
33 inj, surj :: "('a => 'b) => bool" (*inj/surjective*) |
32 inj, surj :: "('a => 'b) => bool" (*inj/surjective*) |
34 inj_onto :: "['a => 'b, 'a set] => bool" |
33 inj_onto :: "['a => 'b, 'a set] => bool" |
35 "``" :: "['a => 'b, 'a set] => ('b set)" (infixl 90) |
34 "``" :: "['a => 'b, 'a set] => ('b set)" (infixl 90) |
36 ":" :: "['a, 'a set] => bool" (infixl 50) (*membership*) |
35 ":" :: "['a, 'a set] => bool" (infixl 50) (*membership*) |
37 "~:" :: "['a, 'a set] => bool" ("(_ ~:/ _)" [50, 51] 50) |
|
38 |
|
39 (* Finite Sets *) |
|
40 |
|
41 insert :: "['a, 'a set] => 'a set" |
|
42 "{}" :: "'a set" ("{}") |
|
43 "@Finset" :: "args => 'a set" ("{(_)}") |
|
44 |
36 |
45 |
37 |
46 (** Binding Constants **) |
38 syntax |
|
39 |
|
40 "~:" :: "['a, 'a set] => bool" (infixl 50) |
|
41 |
|
42 "@Finset" :: "args => 'a set" ("{(_)}") |
47 |
43 |
48 "@Coll" :: "[idt, bool] => 'a set" ("(1{_./ _})") |
44 "@Coll" :: "[idt, bool] => 'a set" ("(1{_./ _})") |
49 "@SetCompr" :: "['a, idts, bool] => 'a set" ("(1{_ |/_./ _})") |
45 "@SetCompr" :: "['a, idts, bool] => 'a set" ("(1{_ |/_./ _})") |
50 |
46 |
51 (* Big Intersection / Union *) |
47 (* Big Intersection / Union *) |
57 |
53 |
58 "@Ball" :: "[idt, 'a set, bool] => bool" ("(3! _:_./ _)" 10) |
54 "@Ball" :: "[idt, 'a set, bool] => bool" ("(3! _:_./ _)" 10) |
59 "@Bex" :: "[idt, 'a set, bool] => bool" ("(3? _:_./ _)" 10) |
55 "@Bex" :: "[idt, 'a set, bool] => bool" ("(3? _:_./ _)" 10) |
60 "*Ball" :: "[idt, 'a set, bool] => bool" ("(3ALL _:_./ _)" 10) |
56 "*Ball" :: "[idt, 'a set, bool] => bool" ("(3ALL _:_./ _)" 10) |
61 "*Bex" :: "[idt, 'a set, bool] => bool" ("(3EX _:_./ _)" 10) |
57 "*Bex" :: "[idt, 'a set, bool] => bool" ("(3EX _:_./ _)" 10) |
62 |
|
63 |
58 |
64 translations |
59 translations |
65 "x ~: y" == "~ (x : y)" |
60 "x ~: y" == "~ (x : y)" |
66 "{x, xs}" == "insert(x, {xs})" |
61 "{x, xs}" == "insert(x, {xs})" |
67 "{x}" == "insert(x, {})" |
62 "{x}" == "insert(x, {})" |
87 Bex_def "Bex(A, P) == ? x. x:A & P(x)" |
82 Bex_def "Bex(A, P) == ? x. x:A & P(x)" |
88 subset_def "A <= B == ! x:A. x:B" |
83 subset_def "A <= B == ! x:A. x:B" |
89 Compl_def "Compl(A) == {x. ~x:A}" |
84 Compl_def "Compl(A) == {x. ~x:A}" |
90 Un_def "A Un B == {x.x:A | x:B}" |
85 Un_def "A Un B == {x.x:A | x:B}" |
91 Int_def "A Int B == {x.x:A & x:B}" |
86 Int_def "A Int B == {x.x:A & x:B}" |
92 set_diff_def "A-B == {x. x:A & ~x:B}" |
87 set_diff_def "A - B == {x. x:A & ~x:B}" |
93 INTER_def "INTER(A, B) == {y. ! x:A. y: B(x)}" |
88 INTER_def "INTER(A, B) == {y. ! x:A. y: B(x)}" |
94 UNION_def "UNION(A, B) == {y. ? x:A. y: B(x)}" |
89 UNION_def "UNION(A, B) == {y. ? x:A. y: B(x)}" |
95 INTER1_def "INTER1(B) == INTER({x.True}, B)" |
90 INTER1_def "INTER1(B) == INTER({x.True}, B)" |
96 UNION1_def "UNION1(B) == UNION({x.True}, B)" |
91 UNION1_def "UNION1(B) == UNION({x.True}, B)" |
97 Inter_def "Inter(S) == (INT x:S. x)" |
92 Inter_def "Inter(S) == (INT x:S. x)" |
98 Union_def "Union(S) == (UN x:S. x)" |
93 Union_def "Union(S) == (UN x:S. x)" |
99 Pow_def "Pow(A) == {B. B <= A}" |
94 Pow_def "Pow(A) == {B. B <= A}" |
100 empty_def "{} == {x. False}" |
95 empty_def "{} == {x. False}" |
101 insert_def "insert(a, B) == {x.x=a} Un B" |
96 insert_def "insert(a, B) == {x.x=a} Un B" |
102 range_def "range(f) == {y. ? x. y=f(x)}" |
97 range_def "range(f) == {y. ? x. y=f(x)}" |
103 image_def "f``A == {y. ? x:A. y=f(x)}" |
98 image_def "f``A == {y. ? x:A. y=f(x)}" |
104 inj_def "inj(f) == ! x y. f(x)=f(y) --> x=y" |
99 inj_def "inj(f) == ! x y. f(x)=f(y) --> x=y" |
111 |
106 |
112 local |
107 local |
113 |
108 |
114 (* Translates between { e | x1..xn. P} and {u. ? x1..xn. u=e & P} *) |
109 (* Translates between { e | x1..xn. P} and {u. ? x1..xn. u=e & P} *) |
115 |
110 |
116 fun dummyC(s) = Const(s,dummyT); |
|
117 |
|
118 val ex_tr = snd(mk_binder_tr("? ","Ex")); |
111 val ex_tr = snd(mk_binder_tr("? ","Ex")); |
119 |
112 |
120 fun nvars(Const("_idts",_) $ _ $ idts) = nvars(idts)+1 |
113 fun nvars(Const("_idts",_) $ _ $ idts) = nvars(idts)+1 |
121 | nvars(_) = 1; |
114 | nvars(_) = 1; |
122 |
115 |
123 fun setcompr_tr[e,idts,b] = |
116 fun setcompr_tr[e,idts,b] = |
124 let val eq = dummyC("op =") $ Bound(nvars(idts)) $ e |
117 let val eq = Syntax.const("op =") $ Bound(nvars(idts)) $ e |
125 val P = dummyC("op &") $ eq $ b |
118 val P = Syntax.const("op &") $ eq $ b |
126 val exP = ex_tr [idts,P] |
119 val exP = ex_tr [idts,P] |
127 in dummyC("Collect") $ Abs("",dummyT,exP) end; |
120 in Syntax.const("Collect") $ Abs("",dummyT,exP) end; |
128 |
121 |
129 val ex_tr' = snd(mk_binder_tr' ("Ex","DUMMY")); |
122 val ex_tr' = snd(mk_binder_tr' ("Ex","DUMMY")); |
130 |
123 |
131 fun setcompr_tr'[Abs(_,_,P)] = |
124 fun setcompr_tr'[Abs(_,_,P)] = |
132 let fun ok(Const("Ex",_)$Abs(_,_,P),n) = ok(P,n+1) |
125 let fun ok(Const("Ex",_)$Abs(_,_,P),n) = ok(P,n+1) |
133 | ok(Const("op &",_) $ (Const("op =",_) $ Bound(m) $ _) $ _, n) = |
126 | ok(Const("op &",_) $ (Const("op =",_) $ Bound(m) $ _) $ _, n) = |
134 if n>0 andalso m=n then () else raise Match |
127 if n>0 andalso m=n then () else raise Match |
135 |
128 |
136 fun tr'(_ $ abs) = |
129 fun tr'(_ $ abs) = |
137 let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr'[abs] |
130 let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr'[abs] |
138 in dummyC("@SetCompr") $ e $ idts $ Q end |
131 in Syntax.const("@SetCompr") $ e $ idts $ Q end |
139 in ok(P,0); tr'(P) end; |
132 in ok(P,0); tr'(P) end; |
140 |
133 |
141 in |
134 in |
142 |
135 |
143 val parse_translation = [("@SetCompr",setcompr_tr)]; |
136 val parse_translation = [("@SetCompr", setcompr_tr)]; |
144 val print_translation = [("Collect",setcompr_tr')]; |
137 val print_translation = [("Collect", setcompr_tr')]; |
145 |
|
146 val print_ast_translation = |
138 val print_ast_translation = |
147 map HOL.alt_ast_tr' [("@Ball", "*Ball"), ("@Bex", "*Bex")]; |
139 map HOL.alt_ast_tr' [("@Ball", "*Ball"), ("@Bex", "*Bex")]; |
148 |
140 |
149 end; |
141 end; |
150 |
142 |