Integ/Relation.ML
changeset 217 b6c0407f203e
equal deleted inserted replaced
216:12943ab62cc5 217:b6c0407f203e
       
     1 (*  Title: 	Relation.ML
       
     2     ID:         $Id$
       
     3     Authors: 	Riccardo Mattolini, Dip. Sistemi e Informatica
       
     4         	Lawrence C Paulson, Cambridge University Computer Laboratory
       
     5     Copyright   1994 Universita' di Firenze
       
     6     Copyright   1993  University of Cambridge
       
     7 
       
     8 Functions represented as relations in HOL Set Theory 
       
     9 *)
       
    10 
       
    11 val RSLIST = curry (op MRS);
       
    12 
       
    13 open Relation;
       
    14 
       
    15 goalw Relation.thy [converse_def] "!!a b r. <a,b>:r ==> <b,a>:converse(r)";
       
    16 by (simp_tac prod_ss 1);
       
    17 by (fast_tac set_cs 1);
       
    18 qed "converseI";
       
    19 
       
    20 goalw Relation.thy [converse_def] "!!a b r. <a,b> : converse(r) ==> <b,a> : r";
       
    21 by (fast_tac comp_cs 1);
       
    22 qed "converseD";
       
    23 
       
    24 qed_goalw "converseE" Relation.thy [converse_def]
       
    25     "[| yx : converse(r);  \
       
    26 \       !!x y. [| yx=<y,x>;  <x,y>:r |] ==> P \
       
    27 \    |] ==> P"
       
    28  (fn [major,minor]=>
       
    29   [ (rtac (major RS CollectE) 1),
       
    30     (REPEAT (eresolve_tac [bexE,exE, conjE, minor] 1)),
       
    31     (hyp_subst_tac 1),
       
    32     (assume_tac 1) ]);
       
    33 
       
    34 val converse_cs = comp_cs addSIs [converseI] 
       
    35 			  addSEs [converseD,converseE];
       
    36 
       
    37 qed_goalw "Domain_iff" Relation.thy [Domain_def]
       
    38     "a: Domain(r) = (EX y. <a,y>: r)"
       
    39  (fn _=> [ (fast_tac comp_cs 1) ]);
       
    40 
       
    41 qed_goal "DomainI" Relation.thy "!!a b r. <a,b>: r ==> a: Domain(r)"
       
    42  (fn _ => [ (etac (exI RS (Domain_iff RS iffD2)) 1) ]);
       
    43 
       
    44 qed_goal "DomainE" Relation.thy
       
    45     "[| a : Domain(r);  !!y. <a,y>: r ==> P |] ==> P"
       
    46  (fn prems=>
       
    47   [ (rtac (Domain_iff RS iffD1 RS exE) 1),
       
    48     (REPEAT (ares_tac prems 1)) ]);
       
    49 
       
    50 qed_goalw "RangeI" Relation.thy [Range_def] "!!a b r.<a,b>: r ==> b : Range(r)"
       
    51  (fn _ => [ (etac (converseI RS DomainI) 1) ]);
       
    52 
       
    53 qed_goalw "RangeE" Relation.thy [Range_def]
       
    54     "[| b : Range(r);  !!x. <x,b>: r ==> P |] ==> P"
       
    55  (fn major::prems=>
       
    56   [ (rtac (major RS DomainE) 1),
       
    57     (resolve_tac prems 1),
       
    58     (etac converseD 1) ]);
       
    59 
       
    60 (*** Image of a set under a function/relation ***)
       
    61 
       
    62 qed_goalw "Image_iff" Relation.thy [Image_def]
       
    63     "b : r^^A = (? x:A. <x,b>:r)"
       
    64  (fn _ => [ fast_tac (comp_cs addIs [RangeI]) 1 ]);
       
    65 
       
    66 qed_goal "Image_singleton_iff" Relation.thy
       
    67     "(b : r^^{a}) = (<a,b>:r)"
       
    68  (fn _ => [ rtac (Image_iff RS trans) 1,
       
    69 	    fast_tac comp_cs 1 ]);
       
    70 
       
    71 qed_goalw "ImageI" Relation.thy [Image_def]
       
    72     "!!a b r. [| <a,b>: r;  a:A |] ==> b : r^^A"
       
    73  (fn _ => [ (REPEAT (ares_tac [CollectI,RangeI,bexI] 1)),
       
    74             (resolve_tac [conjI ] 1),
       
    75             (resolve_tac [RangeI] 1),
       
    76             (REPEAT (fast_tac set_cs 1))]);
       
    77 
       
    78 qed_goalw "ImageE" Relation.thy [Image_def]
       
    79     "[| b: r^^A;  !!x.[| <x,b>: r;  x:A |] ==> P |] ==> P"
       
    80  (fn major::prems=>
       
    81   [ (rtac (major RS CollectE) 1),
       
    82     (safe_tac set_cs),
       
    83     (etac RangeE 1),
       
    84     (rtac (hd prems) 1),
       
    85     (REPEAT (etac bexE 1 ORELSE ares_tac prems 1)) ]);
       
    86 
       
    87 qed_goal "Image_subset" Relation.thy
       
    88     "!!A B r. r <= Sigma(A,%x.B) ==> r^^C <= B"
       
    89  (fn _ =>
       
    90   [ (rtac subsetI 1),
       
    91     (REPEAT (eresolve_tac [asm_rl, ImageE, subsetD RS SigmaD2] 1)) ]);
       
    92 
       
    93 val rel_cs = converse_cs addSIs [converseI] 
       
    94                          addIs  [ImageI, DomainI, RangeI]
       
    95                          addSEs [ImageE, DomainE, RangeE];
       
    96 
       
    97 val rel_eq_cs = rel_cs addSIs [equalityI];
       
    98