ex/Acc.ML
changeset 127 d9527f97246e
child 171 16c4ea954511
equal deleted inserted replaced
126:872f866e630f 127:d9527f97246e
       
     1 (*  Title: 	HOL/ex/Acc
       
     2     ID:         $Id$
       
     3     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
       
     4     Copyright   1994  University of Cambridge
       
     5 
       
     6 Inductive definition of acc(r)
       
     7 
       
     8 See Ch. Paulin-Mohring, Inductive Definitions in the System Coq.
       
     9 Research Report 92-49, LIP, ENS Lyon.  Dec 1992.
       
    10 *)
       
    11 
       
    12 open Acc;
       
    13 
       
    14 (*The intended introduction rule*)
       
    15 val prems = goal Acc.thy
       
    16     "[| !!b. <b,a>:r ==> b: acc(r) |] ==> a: acc(r)";
       
    17 by (fast_tac (set_cs addIs (prems @ 
       
    18 			    map (rewrite_rule [pred_def]) acc.intrs)) 1);
       
    19 val accI = result();
       
    20 
       
    21 goal Acc.thy "!!a b r. [| b: acc(r);  <a,b>: r |] ==> a: acc(r)";
       
    22 by (etac acc.elim 1);
       
    23 by (rewtac pred_def);
       
    24 by (fast_tac set_cs 1);
       
    25 val acc_downward = result();
       
    26 
       
    27 val [major,indhyp] = goal Acc.thy
       
    28     "[| a : acc(r);						\
       
    29 \       !!x. [| x: acc(r);  ALL y. <y,x>:r --> P(y) |] ==> P(x)	\
       
    30 \    |] ==> P(a)";
       
    31 by (rtac (major RS acc.induct) 1);
       
    32 by (rtac indhyp 1);
       
    33 by (resolve_tac acc.intrs 1);
       
    34 by (rewtac pred_def);
       
    35 by (fast_tac set_cs 2);
       
    36 be (Int_lower1 RS Pow_mono RS subsetD) 1;
       
    37 val acc_induct = result();
       
    38 
       
    39 
       
    40 val [major] = goal Acc.thy "r <= Sigma(acc(r), %u. acc(r)) ==> wf(r)";
       
    41 by (rtac (major RS wfI) 1);
       
    42 by (etac acc.induct 1);
       
    43 by (rewtac pred_def);
       
    44 by (fast_tac set_cs 1);
       
    45 val acc_wfI = result();
       
    46 
       
    47 val [major] = goal Acc.thy "wf(r) ==> ALL x. <x,y>: r | <y,x>:r --> y: acc(r)";
       
    48 by (rtac (major RS wf_induct) 1);
       
    49 br (impI RS allI) 1;
       
    50 br accI 1;
       
    51 by (fast_tac set_cs 1);
       
    52 val acc_wfD_lemma = result();
       
    53 
       
    54 val [major] = goal Acc.thy "wf(r) ==> r <= Sigma(acc(r), %u. acc(r))";
       
    55 by (rtac subsetI 1);
       
    56 by (res_inst_tac [("p", "x")] PairE 1);
       
    57 by (fast_tac (set_cs addSIs [SigmaI,
       
    58 			     major RS acc_wfD_lemma RS spec RS mp]) 1);
       
    59 val acc_wfD = result();
       
    60 
       
    61 goal Acc.thy "wf(r)  =  (r <= Sigma(acc(r), %u. acc(r)))";
       
    62 by (EVERY1 [rtac iffI, etac acc_wfD, etac acc_wfI]);
       
    63 val wf_acc_iff = result();