Univ.thy
changeset 48 21291189b51e
parent 0 7949f97df77a
child 51 934a58983311
--- a/Univ.thy	Thu Feb 24 14:45:57 1994 +0100
+++ b/Univ.thy	Wed Mar 02 12:26:55 1994 +0100
@@ -29,7 +29,7 @@
   Atom      :: "('a+nat) => 'a node set"
   Leaf      :: "'a => 'a node set"
   Numb      :: "nat => 'a node set"
-  "."       :: "['a node set, 'a node set]=> 'a node set" 	(infixr 60)
+  "$"       :: "['a node set, 'a node set]=> 'a node set" 	(infixr 60)
   In0,In1   :: "'a node set => 'a node set"
 
   ntrunc    :: "[nat, 'a node set] => 'a node set"
@@ -67,26 +67,26 @@
 
   (*S-expression constructors*)
   Atom_def   "Atom == (%x. {Abs_Node(<%k.0, x>)})"
-  Scons_def  "M.N == (Push_Node(0) `` M) Un (Push_Node(Suc(0)) `` N)"
+  Scons_def  "M$N == (Push_Node(0) `` M) Un (Push_Node(Suc(0)) `` N)"
 
   (*Leaf nodes, with arbitrary or nat labels*)
   Leaf_def   "Leaf == Atom o Inl"
   Numb_def   "Numb == Atom o Inr"
 
   (*Injections of the "disjoint sum"*)
-  In0_def    "In0(M) == Numb(0) . M"
-  In1_def    "In1(M) == Numb(Suc(0)) . M"
+  In0_def    "In0(M) == Numb(0) $ M"
+  In1_def    "In1(M) == Numb(Suc(0)) $ M"
 
   (*the set of nodes with depth less than k*)
   ndepth_def "ndepth(n) == split(Rep_Node(n), %f x. LEAST k. f(k)=0)"
   ntrunc_def "ntrunc(k,N) == {n. n:N & ndepth(n)<k}"
 
   (*products and sums for the "universe"*)
-  uprod_def  "A<*>B == UN x:A. UN y:B. { (x.y) }"
+  uprod_def  "A<*>B == UN x:A. UN y:B. { (x$y) }"
   usum_def   "A<+>B == In0``A Un In1``B"
 
   (*the corresponding eliminators*)
-  Split_def  "Split(M,c) == @u. ? x y. M = x.y & u = c(x,y)"
+  Split_def  "Split(M,c) == @u. ? x y. M = x$y & u = c(x,y)"
 
   Case_def   "Case(M,c,d) == @u.  (? x . M = In0(x) & u = c(x))	\
 \	   	                | (? y . M = In1(y) & u = d(y))"
@@ -97,7 +97,7 @@
   diag_def   "diag(A) == UN x:A. {<x,x>}"
 
   dprod_def  "r<**>s == UN u:r. UN v:s. \
-\                       split(u, %x x'. split(v, %y y'. {<x.y,x'.y'>}))"
+\                       split(u, %x x'. split(v, %y y'. {<x$y,x'$y'>}))"
 
   dsum_def   "r<++>s == (UN u:r. split(u, %x x'. {<In0(x),In0(x')>})) Un \
 \                       (UN v:s. split(v, %y y'. {<In1(y),In1(y')>}))"