--- a/ex/pl.ML Tue Mar 22 08:26:25 1994 +0100
+++ b/ex/pl.ML Tue Mar 22 08:28:31 1994 +0100
@@ -1,10 +1,9 @@
-(* Title: HOL/ex/prop-log.ML
+(* Title: HOL/ex/pl.ML
ID: $Id$
Author: Tobias Nipkow & Lawrence C Paulson
- Copyright 1993 TU Muenchen & University of Cambridge
+ Copyright 1994 TU Muenchen & University of Cambridge
-For ex/prop-log.thy. Inductive definition of propositional logic.
-Soundness and completeness w.r.t. truth-tables.
+Soundness and completeness of propositional logic w.r.t. truth-tables.
Prove: If H|=p then G|=p where G:Fin(H)
*)
@@ -136,7 +135,8 @@
(** The function eval **)
-val pl_ss = set_ss addsimps [pl_rec_var,pl_rec_false,pl_rec_imp];
+val pl_ss = set_ss addsimps [pl_rec_var,pl_rec_false,pl_rec_imp]
+ @ PL0.inject @ PL0.ineq;
goalw PL.thy [eval_def] "tt[false] = False";
by (simp_tac pl_ss 1);
@@ -213,8 +213,7 @@
(*This formulation is required for strong induction hypotheses*)
goal PL.thy "hyps(p,tt) |- if(tt[p], p, p->false)";
by (rtac (expand_if RS iffD2) 1);
-by(res_inst_tac[("x","p")]spec 1);
-by (rtac pl_ind 1);
+by(PL0.induct_tac "p" 1);
by (ALLGOALS (simp_tac (pl_ss addsimps [conseq_I, conseq_H])));
by (fast_tac (set_cs addIs [weaken_left_Un1, weaken_left_Un2,
weaken_right, imp_false]
@@ -250,25 +249,24 @@
(*For the case hyps(p,t)-insert(#v,Y) |- p;
we also have hyps(p,t)-{#v} <= hyps(p, t-{v}) *)
-goal PL.thy "!p.hyps(p, t-{v}) <= insert((#v)->false, hyps(p,t)-{#v})";
-by (rtac pl_ind 1);
+goal PL.thy "hyps(p, t-{v}) <= insert((#v)->false, hyps(p,t)-{#v})";
+by (PL0.induct_tac "p" 1);
by (simp_tac pl_ss 1);
by (simp_tac (pl_ss setloop (split_tac [expand_if])) 1);
-by (fast_tac (set_cs addSEs [sym RS var_neq_imp] addSDs [var_inject]) 1);
by (simp_tac pl_ss 1);
by (fast_tac set_cs 1);
-val hyps_Diff = result() RS spec;
+val hyps_Diff = result();
(*For the case hyps(p,t)-insert(#v -> false,Y) |- p;
we also have hyps(p,t)-{(#v)->false} <= hyps(p, insert(v,t)) *)
-goal PL.thy "!p.hyps(p, insert(v,t)) <= insert(#v, hyps(p,t)-{(#v)->false})";
-by (rtac pl_ind 1);
+goal PL.thy "hyps(p, insert(v,t)) <= insert(#v, hyps(p,t)-{(#v)->false})";
+by (PL0.induct_tac "p" 1);
by (simp_tac pl_ss 1);
-by (simp_tac (pl_ss setloop (split_tac [expand_if])) 1);
-by (fast_tac (set_cs addSEs [var_neq_imp, imp_inject] addSDs [var_inject]) 1);
+by (simp_tac (pl_ss addsimps [insert_subset]
+ setloop (split_tac [expand_if])) 1);
by (simp_tac pl_ss 1);
by (fast_tac set_cs 1);
-val hyps_insert = result() RS spec;
+val hyps_insert = result();
(** Two lemmas for use with weaken_left **)
@@ -282,11 +280,11 @@
(*The set hyps(p,t) is finite, and elements have the form #v or #v->false;
could probably prove the stronger hyps(p,t) : Fin(hyps(p,{}) Un hyps(p,nat))*)
-goal PL.thy "!p.hyps(p,t) : Fin(UN v:{x.True}. {#v, (#v)->false})";
-by (rtac pl_ind 1);
+goal PL.thy "hyps(p,t) : Fin(UN v:{x.True}. {#v, (#v)->false})";
+by (PL0.induct_tac "p" 1);
by (ALLGOALS (simp_tac (pl_ss setloop (split_tac [expand_if])) THEN'
fast_tac (set_cs addSIs [Fin_0I, Fin_insertI, Fin_UnI])));
-val hyps_finite = result() RS spec;
+val hyps_finite = result();
val Diff_weaken_left = subset_refl RSN (2, Diff_mono) RS weaken_left;
@@ -341,4 +339,3 @@
writeln"Reached end of file.";
-