--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Subst/Unifier.ML Thu Sep 16 12:21:07 1993 +0200
@@ -0,0 +1,299 @@
+(* Title: Substitutions/unifier.ML
+ Author: Martin Coen, Cambridge University Computer Laboratory
+ Copyright 1993 University of Cambridge
+
+For unifier.thy.
+Properties of unifiers.
+Cases for partial correctness of algorithm and conditions for termination.
+*)
+
+open Unifier;
+
+val unify_defs =
+ [Idem_def,Unifier_def,MoreGeneral_def,MGUnifier_def,MGIUnifier_def];
+
+(**** Unifiers ****)
+
+goalw Unifier.thy [Unifier_def] "Unifier(s,t,u) = (t <| s = u <| s)";
+by (rtac refl 1);
+val Unifier_iff = result();
+
+goal Unifier.thy
+ "Unifier(s,Comb(t,u),Comb(v,w)) --> Unifier(s,t,v) & Unifier(s,u,w)";
+by (simp_tac (subst_ss addsimps [Unifier_iff]) 1);
+val Unifier_Comb = result() RS mp RS conjE;
+
+goal Unifier.thy
+ "~v : vars_of(t) --> ~v : vars_of(u) -->Unifier(s,t,u) --> \
+\ Unifier(Cons(<v,r>,s),t,u)";
+by (simp_tac (subst_ss addsimps [Unifier_iff,repl_invariance]) 1);
+val Cons_Unifier = result() RS mp RS mp RS mp;
+
+(**** Most General Unifiers ****)
+
+goalw Unifier.thy [MoreGeneral_def] "r >> s = (EX q. s =s= r <> q)";
+by (rtac refl 1);
+val MoreGen_iff = result();
+
+goal Unifier.thy "Nil >> s";
+by (simp_tac (subst_ss addsimps [MoreGen_iff]) 1);
+by (fast_tac (set_cs addIs [refl RS subst_refl]) 1);
+val MoreGen_Nil = result();
+
+goalw Unifier.thy unify_defs
+ "MGUnifier(s,t,u) = (ALL r.Unifier(r,t,u) = s >> r)";
+by (REPEAT (ares_tac [iffI,allI] 1 ORELSE
+ eresolve_tac [conjE,allE,mp,exE,ssubst_subst2] 1));
+by (asm_simp_tac (subst_ss addsimps [subst_comp]) 1);
+by (fast_tac (set_cs addIs [comp_Nil RS sym RS subst_refl]) 1);
+val MGU_iff = result();
+
+val [prem] = goal Unifier.thy
+ "~ Var(v) <: t ==> MGUnifier(Cons(<v,t>,Nil),Var(v),t)";
+by (simp_tac (subst_ss addsimps [MGU_iff,MoreGen_iff,Unifier_iff]) 1);
+by (REPEAT_SOME (step_tac set_cs));
+by (etac subst 1);
+by (etac ssubst_subst2 2);
+by (rtac (Cons_trivial RS subst_sym) 1);
+by (simp_tac (subst_ss addsimps [prem RS Var_not_occs,Var_subst]) 1);
+val MGUnifier_Var = result();
+
+(**** Most General Idempotent Unifiers ****)
+
+goal Unifier.thy "r <> r =s= r --> s =s= r <> q --> r <> s =s= s";
+by (simp_tac (subst_ss addsimps [subst_eq_iff,subst_comp]) 1);
+val MGIU_iff_lemma = result() RS mp RS mp;
+
+goalw Unifier.thy unify_defs
+ "MGIUnifier(s,t,u) = \
+\ (Idem(s) & Unifier(s,t,u) & (ALL r.Unifier(r,t,u) --> s<>r=s=r))";
+by (fast_tac (set_cs addEs [subst_sym,MGIU_iff_lemma]) 1);
+val MGIU_iff = result();
+
+(**** Idempotence ****)
+
+goalw Unifier.thy unify_defs "Idem(s) = (s <> s =s= s)";
+by (rtac refl 1);
+val raw_Idem_iff = result();
+
+goal Unifier.thy "Idem(s) = (sdom(s) Int srange(s) = {})";
+by (simp_tac (subst_ss addsimps [raw_Idem_iff,subst_eq_iff,subst_comp,
+ invariance,dom_range_disjoint])1);
+val Idem_iff = result();
+
+goal Unifier.thy "Idem(Nil)";
+by (simp_tac (subst_ss addsimps [raw_Idem_iff,refl RS subst_refl]) 1);
+val Idem_Nil = result();
+
+goal Unifier.thy "~ (Var(v) <: t) --> Idem(Cons(<v,t>,Nil))";
+by (simp_tac (subst_ss addsimps [Var_subst,vars_iff_occseq,Idem_iff,srange_iff]
+ setloop (split_tac [expand_if])) 1);
+by (fast_tac set_cs 1);
+val Var_Idem = result() RS mp;
+
+val [prem] = goalw Unifier.thy [Idem_def]
+ "Idem(r) ==> Unifier(s,t <| r,u <| r) --> Unifier(r <> s,t <| r,u <| r)";
+by (simp_tac (subst_ss addsimps
+ [Unifier_iff,subst_comp,prem RS comp_subst_subst]) 1);
+val Unifier_Idem_subst = result() RS mp;
+
+val [prem] = goal Unifier.thy
+ "r <> s =s= s ==> Unifier(s,t,u) --> Unifier(s,t <| r,u <| r)";
+by (simp_tac (subst_ss addsimps
+ [Unifier_iff,subst_comp,prem RS comp_subst_subst]) 1);
+val Unifier_comp_subst = result() RS mp;
+
+(*** The domain of a MGIU is a subset of the variables in the terms ***)
+(*** NB this and one for range are only needed for termination ***)
+
+val [prem] = goal Unifier.thy
+ "~ vars_of(Var(x) <| r) = vars_of(Var(x) <| s) ==> ~r =s= s";
+by (rtac (prem RS contrapos) 1);
+by (fast_tac (set_cs addEs [subst_subst2]) 1);
+val lemma_lemma = result();
+
+val prems = goal Unifier.thy
+ "x : sdom(s) --> ~x : srange(s) --> \
+\ ~vars_of(Var(x) <| s<>Cons(<x,Var(x)>,s)) = \
+\ vars_of(Var(x) <| Cons(<x,Var(x)>,s))";
+by (simp_tac (subst_ss addsimps [not_equal_iff]) 1);
+by (REPEAT (resolve_tac [impI,disjI2] 1));
+by(res_inst_tac [("x","x")] exI 1);
+br conjI 1;
+by (asm_simp_tac (subst_ss addsimps [Var_elim,subst_comp,repl_invariance]) 1);
+by (asm_simp_tac (subst_ss addsimps [Var_subst]) 1);
+val MGIU_sdom_lemma = result() RS mp RS mp RS lemma_lemma RS notE;;
+
+goal Unifier.thy "MGIUnifier(s,t,u) --> sdom(s) <= vars_of(t) Un vars_of(u)";
+by (subgoal_tac "! P Q.(P | Q) = (~( ~P & ~Q))" 1);
+by (asm_simp_tac (subst_ss addsimps [MGIU_iff,Idem_iff,subset_iff]) 1);
+by (safe_tac set_cs);
+by (eresolve_tac ([spec] RL [impE]) 1);
+by (rtac Cons_Unifier 1);
+by (ALLGOALS (fast_tac (set_cs addIs [Cons_Unifier,MGIU_sdom_lemma])));
+val MGIU_sdom = result() RS mp;
+
+(*** The range of a MGIU is a subset of the variables in the terms ***)
+
+val prems = goal HOL.thy "P = Q ==> (~P) = (~Q)";
+by (simp_tac (set_ss addsimps prems) 1);
+val not_cong = result();
+
+val prems = goal Unifier.thy
+ "~w=x --> x : vars_of(Var(w) <| s) --> w : sdom(s) --> ~w : srange(s) --> \
+\ ~vars_of(Var(w) <| s<>Cons(<x,Var(w)>,s)) = \
+\ vars_of(Var(w) <| Cons(<x,Var(w)>,s))";
+by (simp_tac (subst_ss addsimps [not_equal_iff]) 1);
+by (REPEAT (resolve_tac [impI,disjI1] 1));
+by(res_inst_tac [("x","w")] exI 1);
+by (ALLGOALS (asm_simp_tac (subst_ss addsimps [Var_elim,subst_comp,
+ vars_var_iff RS not_cong RS iffD2 RS repl_invariance]) ));
+by (fast_tac (set_cs addIs [Var_in_subst]) 1);
+val MGIU_srange_lemma =result() RS mp RS mp RS mp RS mp RS lemma_lemma RS notE;
+
+goal Unifier.thy "MGIUnifier(s,t,u) --> srange(s) <= vars_of(t) Un vars_of(u)";
+by (subgoal_tac "! P Q.(P | Q) = (~( ~P & ~Q))" 1);
+by (asm_simp_tac (subst_ss addsimps [MGIU_iff,srange_iff,subset_iff]) 1);
+by (simp_tac (subst_ss addsimps [Idem_iff]) 1);
+by (safe_tac set_cs);
+by (eresolve_tac ([spec] RL [impE]) 1);
+by (rtac Cons_Unifier 1);
+by (imp_excluded_middle_tac "w=ta" 4);
+by (fast_tac (set_cs addEs [MGIU_srange_lemma]) 5);
+by (ALLGOALS (fast_tac (set_cs addIs [Var_elim2])));
+val MGIU_srange = result() RS mp;
+
+(*************** Correctness of a simple unification algorithm ***************)
+(* *)
+(* fun unify Const(m) Const(n) = if m=n then Nil else Fail *)
+(* | unify Const(m) _ = Fail *)
+(* | unify Var(v) t = if Var(v)<:t then Fail else Cons(<v,t>,Nil)*)
+(* | unify Comb(t,u) Const(n) = Fail *)
+(* | unify Comb(t,u) Var(v) = if Var(v) <: Comb(t,u) then Fail *)
+(* else Cons(<v,Comb(t,u>,Nil) *)
+(* | unify Comb(t,u) Comb(v,w) = let s = unify t v *)
+(* in if s=Fail then Fail *)
+(* else unify (u<|s) (w<|s); *)
+
+(**** Cases for the partial correctness of the algorithm ****)
+
+goalw Unifier.thy unify_defs "MGIUnifier(s,t,u) = MGIUnifier(s,u,t)";
+by (safe_tac (HOL_cs addSEs ([sym]@([spec] RL [mp]))));
+val Unify_comm = result();
+
+goal Unifier.thy "MGIUnifier(Nil,Const(n),Const(n))";
+by (simp_tac (subst_ss addsimps
+ [MGIU_iff,MGU_iff,Unifier_iff,subst_eq_iff,Idem_Nil]) 1);
+val Unify1 = result();
+
+goal Unifier.thy "~m=n --> (ALL l.~Unifier(l,Const(m),Const(n)))";
+by (simp_tac (subst_ss addsimps[Unifier_iff]) 1);
+val Unify2 = result() RS mp;
+
+val [prem] = goalw Unifier.thy [MGIUnifier_def]
+ "~Var(v) <: t ==> MGIUnifier(Cons(<v,t>,Nil),Var(v),t)";
+by (fast_tac (HOL_cs addSIs [prem RS MGUnifier_Var,prem RS Var_Idem]) 1);
+val Unify3 = result();
+
+val [prem] = goal Unifier.thy "Var(v) <: t ==> (ALL l.~Unifier(l,Var(v),t))";
+by (simp_tac (subst_ss addsimps
+ [Unifier_iff,prem RS subst_mono RS occs_irrefl2]) 1);
+val Unify4 = result();
+
+goal Unifier.thy "ALL l.~Unifier(l,Const(m),Comb(t,u))";
+by (simp_tac (subst_ss addsimps [Unifier_iff]) 1);
+val Unify5 = result();
+
+goal Unifier.thy
+ "(ALL l.~Unifier(l,t,v)) --> (ALL l.~Unifier(l,Comb(t,u),Comb(v,w)))";
+by (simp_tac (subst_ss addsimps [Unifier_iff]) 1);
+val Unify6 = result() RS mp;
+
+goal Unifier.thy "MGIUnifier(s,t,v) --> (ALL l.~Unifier(l,u <| s,w <| s)) --> \
+\ (ALL l.~Unifier(l,Comb(t,u),Comb(v,w)))";
+by (simp_tac (subst_ss addsimps [MGIU_iff]) 1);
+by (fast_tac (set_cs addIs [Unifier_comp_subst] addSEs [Unifier_Comb]) 1);
+val Unify7 = result() RS mp RS mp;
+
+val [p1,p2,p3] = goal Unifier.thy
+ "[| Idem(r); Unifier(s,t <| r,u <| r); \
+\ (! q.Unifier(q,t <| r,u <| r) --> s <> q =s= q) |] ==> \
+\ Idem(r <> s)";
+by (cut_facts_tac [p1,
+ p2 RS (p1 RS Unifier_Idem_subst RS (p3 RS spec RS mp))] 1);
+by (REPEAT_SOME (etac rev_mp));
+by (simp_tac (subst_ss addsimps [raw_Idem_iff,subst_eq_iff,subst_comp]) 1);
+val Unify8_lemma1 = result();
+
+val [p1,p2,p3,p4] = goal Unifier.thy
+ "[| Unifier(q,t,v); Unifier(q,u,w); (! q.Unifier(q,t,v) --> r <> q =s= q); \
+\ (! q.Unifier(q,u <| r,w <| r) --> s <> q =s= q) |] ==> \
+\ r <> s <> q =s= q";
+val pp = p1 RS (p3 RS spec RS mp);
+by (cut_facts_tac [pp,
+ p2 RS (pp RS Unifier_comp_subst) RS (p4 RS spec RS mp)] 1);
+by (REPEAT_SOME (etac rev_mp));
+by (simp_tac (subst_ss addsimps [subst_eq_iff,subst_comp]) 1);
+val Unify8_lemma2 = result();
+
+goal Unifier.thy "MGIUnifier(r,t,v) --> MGIUnifier(s,u <| r,w <| r) --> \
+\ MGIUnifier(r <> s,Comb(t,u),Comb(v,w))";
+by (simp_tac (subst_ss addsimps [MGIU_iff,subst_comp,comp_assoc]) 1);
+by (safe_tac HOL_cs);
+by (REPEAT (etac rev_mp 2));
+by (simp_tac (subst_ss addsimps
+ [Unifier_iff,MGIU_iff,subst_comp,comp_assoc]) 2);
+by (ALLGOALS (fast_tac (set_cs addEs
+ [Unifier_Comb,Unify8_lemma1,Unify8_lemma2])));
+val Unify8 = result();
+
+
+(********************** Termination of the algorithm *************************)
+(* *)
+(*UWFD is a well-founded relation that orders the 2 recursive calls in unify *)
+(* NB well-foundedness of UWFD isn't proved *)
+
+
+goalw Unifier.thy [UWFD_def] "UWFD(t,t',Comb(t,u),Comb(t',u'))";
+by (simp_tac subst_ss 1);
+by (fast_tac set_cs 1);
+val UnifyWFD1 = result();
+
+val [prem] = goal Unifier.thy
+ "MGIUnifier(s,t,t') ==> vars_of(u <| s) Un vars_of(u' <| s) <= \
+\ vars_of(Comb(t,u)) Un vars_of(Comb(t',u'))";
+by (subgoal_tac "vars_of(u <| s) Un vars_of(u' <| s) <= \
+\ srange(s) Un vars_of(u) Un srange(s) Un vars_of(u')" 1);
+by (etac subset_trans 1);
+by (ALLGOALS (simp_tac (subst_ss addsimps [Var_intro,subset_iff])));
+by (ALLGOALS (fast_tac (set_cs addDs
+ [Var_intro,prem RS MGIU_srange RS subsetD])));
+val UWFD2_lemma1 = result();
+
+val [major,minor] = goal Unifier.thy
+ "[| MGIUnifier(s,t,t'); ~ u <| s = u |] ==> \
+\ ~ vars_of(u <| s) Un vars_of(u' <| s) = \
+\ (vars_of(t) Un vars_of(u)) Un (vars_of(t') Un vars_of(u'))";
+by (cut_facts_tac
+ [major RS (MGIU_iff RS iffD1) RS conjunct1 RS (Idem_iff RS iffD1)] 1);
+by (rtac (minor RS subst_not_empty RS exE) 1);
+by (rtac (make_elim ((major RS MGIU_sdom) RS subsetD)) 1 THEN assume_tac 1);
+by (rtac (disjI2 RS (not_equal_iff RS iffD2)) 1);
+by (REPEAT (etac rev_mp 1));
+by (asm_simp_tac subst_ss 1);
+by (fast_tac (set_cs addIs [Var_elim2]) 1);
+val UWFD2_lemma2 = result();
+
+val [prem] = goalw Unifier.thy [UWFD_def]
+ "MGIUnifier(s,t,t') ==> UWFD(u <| s,u' <| s,Comb(t,u),Comb(t',u'))";
+by (cut_facts_tac
+ [prem RS UWFD2_lemma1 RS (subseteq_iff_subset_eq RS iffD1)] 1);
+by (imp_excluded_middle_tac "u <| s = u" 1);
+by (simp_tac (set_ss addsimps [occs_Comb2] ) 1);
+by (rtac impI 1 THEN etac subst 1 THEN assume_tac 1);
+by (rtac impI 1);
+by (rtac (conjI RS (ssubset_iff RS iffD2) RS disjI1) 1);
+by (asm_simp_tac (set_ss addsimps [subseteq_iff_subset_eq]) 1);
+by (asm_simp_tac subst_ss 1);
+by (fast_tac (set_cs addDs [prem RS UWFD2_lemma2]) 1);
+val UnifyWFD2 = result();