--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/fun.ML Thu Sep 16 12:21:07 1993 +0200
@@ -0,0 +1,192 @@
+(* Title: HOL/fun
+ ID: $Id$
+ Author: Tobias Nipkow, Cambridge University Computer Laboratory
+ Copyright 1993 University of Cambridge
+
+Lemmas about functions.
+*)
+
+goal Set.thy "(f = g) = (!x. f(x)=g(x))";
+by (rtac iffI 1);
+by(asm_simp_tac HOL_ss 1);
+by(rtac ext 1 THEN asm_simp_tac HOL_ss 1);
+val expand_fun_eq = result();
+
+val prems = goal Set.thy
+ "[| f(x)=u; !!x. P(x) ==> g(f(x)) = x; P(x) |] ==> x=g(u)";
+by (rtac (arg_cong RS box_equals) 1);
+by (REPEAT (resolve_tac (prems@[refl]) 1));
+val apply_inverse = result();
+
+
+(*** Range of a function ***)
+
+(*Frequently b does not have the syntactic form of f(x).*)
+val [prem] = goalw Set.thy [range_def] "b=f(x) ==> b : range(f)";
+by (EVERY1 [rtac CollectI, rtac exI, rtac prem]);
+val range_eqI = result();
+
+val rangeI = refl RS range_eqI;
+
+val [major,minor] = goalw Set.thy [range_def]
+ "[| b : range(%x.f(x)); !!x. b=f(x) ==> P |] ==> P";
+by (rtac (major RS CollectD RS exE) 1);
+by (etac minor 1);
+val rangeE = result();
+
+(*** Image of a set under a function ***)
+
+val prems = goalw Set.thy [image_def] "[| b=f(x); x:A |] ==> b : f``A";
+by (REPEAT (resolve_tac (prems @ [CollectI,bexI,prem]) 1));
+val image_eqI = result();
+
+val imageI = refl RS image_eqI;
+
+val major::prems = goalw Set.thy [image_def]
+ "[| b : (%x.f(x))``A; !!x.[| b=f(x); x:A |] ==> P |] ==> P";
+by (rtac (major RS CollectD RS bexE) 1);
+by (REPEAT (ares_tac prems 1));
+val imageE = result();
+
+goal Set.thy "(f o g)``r = f``(g``r)";
+by (stac o_def 1);
+by (rtac set_ext 1);
+by (fast_tac (HOL_cs addIs [imageI] addSEs [imageE]) 1);
+val image_compose = result();
+
+goal Set.thy "f``(A Un B) = f``A Un f``B";
+by (rtac set_ext 1);
+by (fast_tac (HOL_cs addIs [imageI,UnCI] addSEs [imageE,UnE]) 1);
+val image_Un = result();
+
+(*** inj(f): f is a one-to-one function ***)
+
+val prems = goalw Set.thy [inj_def]
+ "[| !! x y. f(x) = f(y) ==> x=y |] ==> inj(f)";
+by (fast_tac (HOL_cs addIs prems) 1);
+val injI = result();
+
+val [major] = goal Set.thy "(!!x. g(f(x)) = x) ==> inj(f)";
+by (rtac injI 1);
+by (etac (arg_cong RS box_equals) 1);
+by (rtac major 1);
+by (rtac major 1);
+val inj_inverseI = result();
+
+val [major,minor] = goalw Set.thy [inj_def]
+ "[| inj(f); f(x) = f(y) |] ==> x=y";
+by (rtac (major RS spec RS spec RS mp) 1);
+by (rtac minor 1);
+val injD = result();
+
+(*Useful with the simplifier*)
+val [major] = goal Set.thy "inj(f) ==> (f(x) = f(y)) = (x=y)";
+by (rtac iffI 1);
+by (etac (major RS injD) 1);
+by (etac arg_cong 1);
+val inj_eq = result();
+
+val [major] = goal Set.thy "inj(f) ==> (@x.f(x)=f(y)) = y";
+by (rtac (major RS injD) 1);
+by (rtac selectI 1);
+by (rtac refl 1);
+val inj_select = result();
+
+(*A one-to-one function has an inverse (given using select).*)
+val [major] = goal Set.thy "inj(f) ==> Inv(f,f(x)) = x";
+by (EVERY1 [stac Inv_def, rtac (major RS inj_select)]);
+val Inv_f_f = result();
+
+(* Useful??? *)
+val [oneone,minor] = goal Set.thy
+ "[| inj(f); !!y. y: range(f) ==> P(Inv(f,y)) |] ==> P(x)";
+by (res_inst_tac [("t", "x")] (oneone RS (Inv_f_f RS subst)) 1);
+by (rtac (rangeI RS minor) 1);
+val inj_transfer = result();
+
+
+(*** inj_onto(f,A): f is one-to-one over A ***)
+
+val prems = goalw Set.thy [inj_onto_def]
+ "(!! x y. [| f(x) = f(y); x:A; y:A |] ==> x=y) ==> inj_onto(f,A)";
+by (fast_tac (HOL_cs addIs prems addSIs [ballI]) 1);
+val inj_ontoI = result();
+
+val [major] = goal Set.thy
+ "(!!x. x:A ==> g(f(x)) = x) ==> inj_onto(f,A)";
+by (rtac inj_ontoI 1);
+by (etac (apply_inverse RS trans) 1);
+by (REPEAT (eresolve_tac [asm_rl,major] 1));
+val inj_onto_inverseI = result();
+
+val major::prems = goalw Set.thy [inj_onto_def]
+ "[| inj_onto(f,A); f(x)=f(y); x:A; y:A |] ==> x=y";
+by (rtac (major RS bspec RS bspec RS mp) 1);
+by (REPEAT (resolve_tac prems 1));
+val inj_ontoD = result();
+
+val major::prems = goal Set.thy
+ "[| inj_onto(f,A); ~x=y; x:A; y:A |] ==> ~ f(x)=f(y)";
+by (rtac contrapos 1);
+by (etac (major RS inj_ontoD) 2);
+by (REPEAT (resolve_tac prems 1));
+val inj_onto_contraD = result();
+
+
+(*** Lemmas about inj ***)
+
+val prems = goal Set.thy
+ "[| inj(f); inj_onto(g,range(f)) |] ==> inj(g o f)";
+by (stac o_def 1);
+by (cut_facts_tac prems 1);
+by (fast_tac (HOL_cs addIs [injI,rangeI]
+ addEs [injD,inj_ontoD]) 1);
+val comp_inj = result();
+
+val [prem] = goal Set.thy "inj(f) ==> inj_onto(f,A)";
+by (fast_tac (HOL_cs addIs [prem RS injD, inj_ontoI]) 1);
+val inj_imp = result();
+
+val [prem] = goal Set.thy "y : range(f) ==> f(Inv(f,y)) = y";
+by (EVERY1 [stac Inv_def, rtac (prem RS rangeE), rtac selectI, etac sym]);
+val f_Inv_f = result();
+
+val prems = goal Set.thy
+ "[| Inv(f,x)=Inv(f,y); x: range(f); y: range(f) |] ==> x=y";
+by (rtac (arg_cong RS box_equals) 1);
+by (REPEAT (resolve_tac (prems @ [f_Inv_f]) 1));
+val Inv_injective = result();
+
+val prems = goal Set.thy
+ "[| inj(f); A<=range(f) |] ==> inj_onto(Inv(f), A)";
+by (cut_facts_tac prems 1);
+by (fast_tac (HOL_cs addIs [inj_ontoI]
+ addEs [Inv_injective,injD,subsetD]) 1);
+val inj_onto_Inv = result();
+
+
+(*** Set reasoning tools ***)
+
+val set_cs = HOL_cs
+ addSIs [ballI, subsetI, InterI, INT_I, INT1_I, CollectI,
+ ComplI, IntI, DiffI, UnCI, insertCI]
+ addIs [bexI, UnionI, UN_I, UN1_I, imageI, rangeI]
+ addSEs [bexE, UnionE, UN_E, UN1_E, DiffE,
+ CollectE, ComplE, IntE, UnE, insertE, imageE, rangeE, emptyE]
+ addEs [ballE, InterD, InterE, INT_D, INT_E, make_elim INT1_D,
+ subsetD, subsetCE];
+
+fun cfast_tac prems = cut_facts_tac prems THEN' fast_tac set_cs;
+
+
+fun prover s = prove_goal Set.thy s (fn _=>[fast_tac set_cs 1]);
+
+val mem_simps = map prover
+ [ "(a : A Un B) = (a:A | a:B)",
+ "(a : A Int B) = (a:A & a:B)",
+ "(a : Compl(B)) = (~a:B)",
+ "(a : A-B) = (a:A & ~a:B)",
+ "(a : {b}) = (a=b)",
+ "(a : {x.P(x)}) = P(a)" ];
+
+val set_ss = HOL_ss addsimps mem_simps;