--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/sexp.thy Thu Sep 16 12:21:07 1993 +0200
@@ -0,0 +1,36 @@
+(* Title: HOL/sexp
+ ID: $Id$
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Copyright 1992 University of Cambridge
+
+S-expressions, general binary trees for defining recursive data structures
+*)
+
+Sexp = Univ +
+consts
+ Sexp :: "'a node set set"
+
+ Sexp_case :: "['a node set, 'a=>'b, nat=>'b, \
+\ ['a node set,'a node set]=>'b] => 'b"
+
+ Sexp_rec :: "['a node set, 'a=>'b, nat=>'b, \
+\ ['a node set,'a node set,'b,'b]=>'b] => 'b"
+
+ pred_Sexp :: "('a node set * 'a node set)set"
+
+rules
+ Sexp_def "Sexp == lfp(%Z. range(Leaf) Un range(Numb) Un Z<*>Z)"
+
+ Sexp_case_def
+ "Sexp_case(M,c,d,e) == @ z. (? x. M=Leaf(x) & z=c(x)) \
+\ | (? k. M=Numb(k) & z=d(k)) \
+\ | (? N1 N2. M = N1 . N2 & z=e(N1,N2))"
+
+ pred_Sexp_def
+ "pred_Sexp == UN M: Sexp. UN N: Sexp. {<M, M.N>, <N, M.N>}"
+
+ Sexp_rec_def
+ "Sexp_rec(M,c,d,e) == wfrec(pred_Sexp, M, \
+\ %M g. Sexp_case(M, c, d, %N1 N2. e(N1, N2, g(N1), g(N2))))"
+end
+