sexp.thy
changeset 0 7949f97df77a
child 48 21291189b51e
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/sexp.thy	Thu Sep 16 12:21:07 1993 +0200
@@ -0,0 +1,36 @@
+(*  Title: 	HOL/sexp
+    ID:         $Id$
+    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1992  University of Cambridge
+
+S-expressions, general binary trees for defining recursive data structures
+*)
+
+Sexp = Univ +
+consts
+  Sexp      :: "'a node set set"
+
+  Sexp_case :: "['a node set, 'a=>'b, nat=>'b, 	\
+\                ['a node set,'a node set]=>'b] => 'b"
+
+  Sexp_rec  :: "['a node set, 'a=>'b, nat=>'b, 	\
+\                ['a node set,'a node set,'b,'b]=>'b] => 'b"
+  
+  pred_Sexp :: "('a node set * 'a node set)set"
+
+rules
+  Sexp_def "Sexp == lfp(%Z. range(Leaf) Un range(Numb) Un Z<*>Z)"
+
+  Sexp_case_def	
+   "Sexp_case(M,c,d,e) == @ z. (? x.   M=Leaf(x) & z=c(x))  \
+\                            | (? k.   M=Numb(k) & z=d(k))  \
+\                            | (? N1 N2. M = N1 . N2  & z=e(N1,N2))"
+
+  pred_Sexp_def
+     "pred_Sexp == UN M: Sexp. UN N: Sexp. {<M, M.N>, <N, M.N>}"
+
+  Sexp_rec_def
+   "Sexp_rec(M,c,d,e) == wfrec(pred_Sexp, M,  \
+\             %M g. Sexp_case(M, c, d, %N1 N2. e(N1, N2, g(N1), g(N2))))"
+end
+