--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/wf.ML Thu Sep 16 12:21:07 1993 +0200
@@ -0,0 +1,198 @@
+(* Title: HOL/wf.ML
+ ID: $Id$
+ Author: Tobias Nipkow
+ Copyright 1992 University of Cambridge
+
+For wf.thy. Well-founded Recursion
+*)
+
+open WF;
+
+val H_cong = read_instantiate [("f","H::[?'a, ?'a=>?'b]=>?'b")]
+ (standard(refl RS cong RS cong));
+val H_cong1 = refl RS H_cong;
+
+(*Restriction to domain A. If r is well-founded over A then wf(r)*)
+val [prem1,prem2] = goalw WF.thy [wf_def]
+ "[| r <= Sigma(A, %u.A); \
+\ !!x P. [| ! x. (! y. <y,x> : r --> P(y)) --> P(x); x:A |] ==> P(x) |] \
+\ ==> wf(r)";
+by (strip_tac 1);
+by (rtac allE 1);
+by (assume_tac 1);
+by (best_tac (HOL_cs addSEs [prem1 RS subsetD RS SigmaE2] addIs [prem2]) 1);
+val wfI = result();
+
+val major::prems = goalw WF.thy [wf_def]
+ "[| wf(r); \
+\ !!x.[| ! y. <y,x>: r --> P(y) |] ==> P(x) \
+\ |] ==> P(a)";
+by (rtac (major RS spec RS mp RS spec) 1);
+by (fast_tac (HOL_cs addEs prems) 1);
+val wf_induct = result();
+
+(*Perform induction on i, then prove the wf(r) subgoal using prems. *)
+fun wf_ind_tac a prems i =
+ EVERY [res_inst_tac [("a",a)] wf_induct i,
+ rename_last_tac a ["1"] (i+1),
+ ares_tac prems i];
+
+val prems = goal WF.thy "[| wf(r); <a,x>:r; <x,a>:r |] ==> P";
+by (subgoal_tac "! x. <a,x>:r --> <x,a>:r --> P" 1);
+by (fast_tac (HOL_cs addIs prems) 1);
+by (wf_ind_tac "a" prems 1);
+by (fast_tac set_cs 1);
+val wf_anti_sym = result();
+
+val prems = goal WF.thy "[| wf(r); <a,a>: r |] ==> P";
+by (rtac wf_anti_sym 1);
+by (REPEAT (resolve_tac prems 1));
+val wf_anti_refl = result();
+
+(*transitive closure of a WF relation is WF!*)
+val [prem] = goal WF.thy "wf(r) ==> wf(r^+)";
+by (rewtac wf_def);
+by (strip_tac 1);
+(*must retain the universal formula for later use!*)
+by (rtac allE 1 THEN assume_tac 1);
+by (etac mp 1);
+by (res_inst_tac [("a","x")] (prem RS wf_induct) 1);
+by (rtac (impI RS allI) 1);
+by (etac tranclE 1);
+by (fast_tac HOL_cs 1);
+by (fast_tac HOL_cs 1);
+val wf_trancl = result();
+
+
+(** cut **)
+
+(*This rewrite rule works upon formulae; thus it requires explicit use of
+ H_cong to expose the equality*)
+goalw WF.thy [cut_def]
+ "(cut(f,r,x) = cut(g,r,x)) = (!y. <y,x>:r --> f(y)=g(y))";
+by(simp_tac (HOL_ss addsimps [expand_fun_eq]
+ setloop (split_tac [expand_if])) 1);
+val cut_cut_eq = result();
+
+goalw WF.thy [cut_def] "!!x. <x,a>:r ==> cut(f,r,a)(x) = f(x)";
+by(asm_simp_tac HOL_ss 1);
+val cut_apply = result();
+
+
+(*** is_recfun ***)
+
+goalw WF.thy [is_recfun_def,cut_def]
+ "!!f. [| is_recfun(r,a,H,f); ~<b,a>:r |] ==> f(b) = (@z.True)";
+by (etac ssubst 1);
+by(asm_simp_tac HOL_ss 1);
+val is_recfun_undef = result();
+
+(*eresolve_tac transD solves <a,b>:r using transitivity AT MOST ONCE
+ mp amd allE instantiate induction hypotheses*)
+fun indhyp_tac hyps =
+ ares_tac (TrueI::hyps) ORELSE'
+ (cut_facts_tac hyps THEN'
+ DEPTH_SOLVE_1 o (ares_tac [TrueI] ORELSE'
+ eresolve_tac [transD, mp, allE]));
+
+(*** NOTE! some simplifications need a different finish_tac!! ***)
+fun indhyp_tac hyps =
+ resolve_tac (TrueI::refl::hyps) ORELSE'
+ (cut_facts_tac hyps THEN'
+ DEPTH_SOLVE_1 o (ares_tac [TrueI] ORELSE'
+ eresolve_tac [transD, mp, allE]));
+val wf_super_ss = HOL_ss setsolver indhyp_tac;
+
+val prems = goalw WF.thy [is_recfun_def,cut_def]
+ "[| wf(r); trans(r); is_recfun(r,a,H,f); is_recfun(r,b,H,g) |] ==> \
+ \ <x,a>:r --> <x,b>:r --> f(x)=g(x)";
+by (cut_facts_tac prems 1);
+by (etac wf_induct 1);
+by (REPEAT (rtac impI 1 ORELSE etac ssubst 1));
+by (asm_simp_tac (wf_super_ss addcongs [if_cong]) 1);
+val is_recfun_equal_lemma = result();
+val is_recfun_equal = standard (is_recfun_equal_lemma RS mp RS mp);
+
+
+val prems as [wfr,transr,recfa,recgb,_] = goalw WF.thy [cut_def]
+ "[| wf(r); trans(r); \
+\ is_recfun(r,a,H,f); is_recfun(r,b,H,g); <b,a>:r |] ==> \
+\ cut(f,r,b) = g";
+val gundef = recgb RS is_recfun_undef
+and fisg = recgb RS (recfa RS (transr RS (wfr RS is_recfun_equal)));
+by (cut_facts_tac prems 1);
+by (rtac ext 1);
+by (asm_simp_tac (wf_super_ss addsimps [gundef,fisg]
+ setloop (split_tac [expand_if])) 1);
+val is_recfun_cut = result();
+
+(*** Main Existence Lemma -- Basic Properties of the_recfun ***)
+
+val prems = goalw WF.thy [the_recfun_def]
+ "is_recfun(r,a,H,f) ==> is_recfun(r, a, H, the_recfun(r,a,H))";
+by (res_inst_tac [("P", "is_recfun(r,a,H)")] selectI 1);
+by (resolve_tac prems 1);
+val is_the_recfun = result();
+
+val prems = goal WF.thy
+ "[| wf(r); trans(r) |] ==> is_recfun(r, a, H, the_recfun(r,a,H))";
+by (cut_facts_tac prems 1);
+by (wf_ind_tac "a" prems 1);
+by (res_inst_tac [("f", "cut(%y. wftrec(r,y,H), r, a1)")] is_the_recfun 1);
+by (rewrite_goals_tac [is_recfun_def, wftrec_def]);
+by (rtac (cut_cut_eq RS ssubst) 1);
+(*Applying the substitution: must keep the quantified assumption!!*)
+by (EVERY1 [strip_tac, rtac H_cong1, rtac allE, atac,
+ etac (mp RS ssubst), atac]);
+by (fold_tac [is_recfun_def]);
+by (asm_simp_tac (wf_super_ss addsimps[cut_apply,is_recfun_cut,cut_cut_eq]) 1);
+val unfold_the_recfun = result();
+
+
+(*Beware incompleteness of unification!*)
+val prems = goal WF.thy
+ "[| wf(r); trans(r); <c,a>:r; <c,b>:r |] \
+\ ==> the_recfun(r,a,H,c) = the_recfun(r,b,H,c)";
+by (DEPTH_SOLVE (ares_tac (prems@[is_recfun_equal,unfold_the_recfun]) 1));
+val the_recfun_equal = result();
+
+val prems = goal WF.thy
+ "[| wf(r); trans(r); <b,a>:r |] \
+\ ==> cut(the_recfun(r,a,H),r,b) = the_recfun(r,b,H)";
+by (REPEAT (ares_tac (prems@[is_recfun_cut,unfold_the_recfun]) 1));
+val the_recfun_cut = result();
+
+(*** Unfolding wftrec ***)
+
+goalw WF.thy [wftrec_def]
+ "!!r. [| wf(r); trans(r) |] ==> \
+\ wftrec(r,a,H) = H(a, cut(%x.wftrec(r,x,H), r, a))";
+by (EVERY1 [stac (rewrite_rule [is_recfun_def] unfold_the_recfun),
+ REPEAT o atac, rtac H_cong1]);
+by (asm_simp_tac (HOL_ss addsimps [cut_cut_eq,the_recfun_cut]) 1);
+val wftrec = result();
+
+(*Unused but perhaps interesting*)
+val prems = goal WF.thy
+ "[| wf(r); trans(r); !!f x. H(x, cut(f,r,x)) = H(x,f) |] ==> \
+\ wftrec(r,a,H) = H(a, %x.wftrec(r,x,H))";
+by (rtac (wftrec RS trans) 1);
+by (REPEAT (resolve_tac prems 1));
+val wftrec2 = result();
+
+(** Removal of the premise trans(r) **)
+
+goalw WF.thy [wfrec_def]
+ "!!r. wf(r) ==> wfrec(r,a,H) = H(a, cut(%x.wfrec(r,x,H), r, a))";
+by (etac (wf_trancl RS wftrec RS ssubst) 1);
+by (rtac trans_trancl 1);
+by (rtac (refl RS H_cong) 1); (*expose the equality of cuts*)
+by (simp_tac (HOL_ss addsimps [cut_cut_eq, cut_apply, r_into_trancl]) 1);
+val wfrec = result();
+
+(*This form avoids giant explosions in proofs. NOTE USE OF == *)
+val rew::prems = goal WF.thy
+ "[| !!x. f(x)==wfrec(r,x,H); wf(r) |] ==> f(a) = H(a, cut(%x.f(x),r,a))";
+by (rewtac rew);
+by (REPEAT (resolve_tac (prems@[wfrec]) 1));
+val def_wfrec = result();