--- a/set.ML Mon Oct 04 15:43:54 1993 +0100
+++ b/set.ML Thu Oct 07 10:20:30 1993 +0100
@@ -42,7 +42,7 @@
val bspec = result();
val major::prems = goalw Set.thy [Ball_def]
- "[| ! x:A. P(x); P(x) ==> Q; ~ x:A ==> Q |] ==> Q";
+ "[| ! x:A. P(x); P(x) ==> Q; x~:A ==> Q |] ==> Q";
by (rtac (major RS spec RS impCE) 1);
by (REPEAT (eresolve_tac prems 1));
val ballE = result();
@@ -109,7 +109,7 @@
(*Classical elimination rule*)
val major::prems = goalw Set.thy [subset_def]
- "[| A <= B; ~(c:A) ==> P; c:B ==> P |] ==> P";
+ "[| A <= B; c~:A ==> P; c:B ==> P |] ==> P";
by (rtac (major RS ballE) 1);
by (REPEAT (eresolve_tac prems 1));
val subsetCE = result();
@@ -153,7 +153,7 @@
val equalityE = result();
val major::prems = goal Set.thy
- "[| A = B; [| c:A; c:B |] ==> P; [| ~ c:A; ~ c:B |] ==> P |] ==> P";
+ "[| A = B; [| c:A; c:B |] ==> P; [| c~:A; c~:B |] ==> P |] ==> P";
by (rtac (major RS equalityE) 1);
by (REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1));
val equalityCE = result();
@@ -179,7 +179,7 @@
Negated assumptions behave like formulae on the right side of the notional
turnstile...*)
val major::prems = goalw Set.thy [Compl_def]
- "[| c : Compl(A) |] ==> ~c:A";
+ "[| c : Compl(A) |] ==> c~:A";
by (rtac (major RS CollectD) 1);
val ComplD = result();
@@ -197,7 +197,7 @@
val UnI2 = result();
(*Classical introduction rule: no commitment to A vs B*)
-val UnCI = prove_goal Set.thy "(~c:B ==> c:A) ==> c : A Un B"
+val UnCI = prove_goal Set.thy "(c~:B ==> c:A) ==> c : A Un B"
(fn prems=>
[ (rtac classical 1),
(REPEAT (ares_tac (prems@[UnI1,notI]) 1)),
@@ -236,7 +236,7 @@
(*** Set difference ***)
val DiffI = prove_goalw Set.thy [set_diff_def]
- "[| c : A; ~ c : B |] ==> c : A - B"
+ "[| c : A; c ~: B |] ==> c : A - B"
(fn prems=> [ (REPEAT (resolve_tac (prems @ [CollectI,conjI]) 1)) ]);
val DiffD1 = prove_goalw Set.thy [set_diff_def]
@@ -249,12 +249,12 @@
[rtac (minor RS (major RS CollectD RS conjunct2 RS notE)) 1]);
val DiffE = prove_goal Set.thy
- "[| c : A - B; [| c:A; ~ c:B |] ==> P |] ==> P"
+ "[| c : A - B; [| c:A; c~:B |] ==> P |] ==> P"
(fn prems=>
[ (resolve_tac prems 1),
(REPEAT (ares_tac (prems RL [DiffD1, DiffD2 RS notI]) 1)) ]);
-val Diff_iff = prove_goal Set.thy "(c : A-B) = (c:A & ~ c:B)"
+val Diff_iff = prove_goal Set.thy "(c : A-B) = (c:A & c~:B)"
(fn _ => [ (fast_tac (HOL_cs addSIs [DiffI] addSEs [DiffE]) 1) ]);
@@ -294,7 +294,7 @@
(fn _ => [fast_tac (HOL_cs addIs [insertI1,insertI2] addSEs [insertE]) 1]);
(*Classical introduction rule*)
-val insertCI = prove_goal Set.thy "(~a:B ==> a=b) ==> a: insert(b,B)"
+val insertCI = prove_goal Set.thy "(a~:B ==> a=b) ==> a: insert(b,B)"
(fn [prem]=>
[ (rtac (disjCI RS (insert_iff RS iffD2)) 1),
(etac prem 1) ]);
@@ -358,7 +358,7 @@
(*"Classical" elimination -- by the Excluded Middle on a:A *)
val major::prems = goalw Set.thy [INTER_def]
- "[| b : (INT x:A. B(x)); b: B(a) ==> R; ~ a:A ==> R |] ==> R";
+ "[| b : (INT x:A. B(x)); b: B(a) ==> R; a~:A ==> R |] ==> R";
by (rtac (major RS CollectD RS ballE) 1);
by (REPEAT (eresolve_tac prems 1));
val INT_E = result();
@@ -430,7 +430,7 @@
(*"Classical" elimination rule -- does not require proving X:C *)
val major::prems = goalw Set.thy [Inter_def]
- "[| A : Inter(C); A:X ==> R; ~ X:C ==> R |] ==> R";
+ "[| A : Inter(C); A:X ==> R; X~:C ==> R |] ==> R";
by (rtac (major RS INT_E) 1);
by (REPEAT (eresolve_tac prems 1));
val InterE = result();