ex/mt.ML
changeset 14 9b0142dad559
child 18 6079c5a92757
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/ex/mt.ML	Tue Nov 09 11:08:13 1993 +0100
@@ -0,0 +1,826 @@
+(*  Title: 	HOL/ex/mt.ML
+    ID:         $Id$
+    Author: 	Jacob Frost, Cambridge University Computer Laboratory
+    Copyright   1993  University of Cambridge
+
+Based upon the article
+    Robin Milner and Mads Tofte,
+    Co-induction in Relational Semantics,
+    Theoretical Computer Science 87 (1991), pages 209-220.
+
+Written up as
+    Jacob Frost, A Case Study of Co_induction in Isabelle/HOL
+    Report 308, Computer Lab, University of Cambridge (1993).
+*)
+
+open MT;
+
+val prems = goal MT.thy "~a:{b} ==> ~a=b";
+by (cut_facts_tac prems 1);
+by (rtac notI 1);
+by (dtac notE 1);
+by (hyp_subst_tac 1);
+by (rtac singletonI 1);
+by (assume_tac 1);
+val notsingletonI = result();
+
+val prems = goalw MT.thy [Un_def]
+  "[| c : A Un B; c : A & ~c : B ==> P; c : B ==> P |] ==> P";
+by (cut_facts_tac prems 1);bd CollectD 1;be disjE 1;
+by (cut_facts_tac [excluded_middle] 1);be disjE 1;
+by (resolve_tac prems 1);br conjI 1;ba 1;ba 1;
+by (eresolve_tac prems 1);
+by (eresolve_tac prems 1);
+val UnSE = result();
+
+(* ############################################################ *)
+(* Inference systems                                            *)
+(* ############################################################ *)
+
+val infsys_mono_tac =
+  (rewtac subset_def) THEN (safe_tac HOL_cs) THEN (rtac ballI 1) THEN
+  (rtac CollectI 1) THEN (dtac CollectD 1) THEN
+  REPEAT 
+    ( (TRY ((etac disjE 1) THEN (rtac disjI2 2) THEN (rtac disjI1 1))) THEN
+      (REPEAT (etac exE 1)) THEN (REPEAT (rtac exI 1)) THEN (fast_tac set_cs 1)
+    );
+
+val prems = goal MT.thy "P(a,b) ==> P(fst(<a,b>),snd(<a,b>))";
+by (rtac (fst_conv RS ssubst) 1);
+by (rtac (snd_conv RS ssubst) 1);
+by (resolve_tac prems 1);
+val infsys_p1 = result();
+
+val prems = goal MT.thy "P(fst(<a,b>),snd(<a,b>)) ==> P(a,b)";
+by (cut_facts_tac prems 1);
+by (dtac (fst_conv RS subst) 1);
+by (dtac (snd_conv RS subst) 1);
+by (assume_tac 1);
+val infsys_p2 = result();
+
+val prems = goal MT.thy 
+  "P(a,b,c) ==> P(fst(fst(<<a,b>,c>)),snd(fst(<<a,b>,c>)),snd(<<a,b>,c>))";
+by (rtac (fst_conv RS ssubst) 1);
+by (rtac (fst_conv RS ssubst) 1);
+by (rtac (snd_conv RS ssubst) 1);
+by (rtac (snd_conv RS ssubst) 1);
+by (resolve_tac prems 1);
+val infsys_pp1 = result();
+
+val prems = goal MT.thy 
+  "P(fst(fst(<<a,b>,c>)),snd(fst(<<a,b>,c>)),snd(<<a,b>,c>)) ==> P(a,b,c)";
+by (cut_facts_tac prems 1);
+by (dtac (fst_conv RS subst) 1);
+by (dtac (fst_conv RS subst) 1);
+by (dtac (snd_conv RS subst) 1);
+by (dtac (snd_conv RS subst) 1);
+by (assume_tac 1);
+val infsys_pp2 = result();
+
+(* ############################################################ *)
+(* Fixpoints                                                    *)
+(* ############################################################ *)
+
+(* Least fixpoints *)
+
+val prems = goal MT.thy "[| mono(f); x:f(lfp(f)) |] ==> x:lfp(f)";
+by (rtac subsetD 1);
+by (rtac lfp_lemma2 1);
+by (resolve_tac prems 1);brs prems 1;
+val lfp_intro2 = result();
+
+val prems = goal MT.thy
+  " [| x:lfp(f); mono(f); !!y. y:f(lfp(f)) ==> P(y) |] ==> \
+\   P(x)";
+by (cut_facts_tac prems 1);
+by (resolve_tac prems 1);br subsetD 1;
+by (rtac lfp_lemma3 1);ba 1;ba 1;
+val lfp_elim2 = result();
+
+val prems = goal MT.thy
+  " [| x:lfp(f); mono(f); !!y. y:f(lfp(f) Int {x.P(x)}) ==> P(y) |] ==> \
+\   P(x)";
+by (cut_facts_tac prems 1);
+by (etac induct 1);ba 1;
+by (eresolve_tac prems 1);
+val lfp_ind2 = result();
+
+(* Greatest fixpoints *)
+
+(* Note : "[| x:S; S <= f(S Un gfp(f)); mono(f) |] ==> x:gfp(f)" *)
+
+val [cih,monoh] = goal MT.thy "[| x:f({x} Un gfp(f)); mono(f) |] ==> x:gfp(f)";
+by (rtac (cih RSN (2,gfp_upperbound RS subsetD)) 1);
+by (rtac (monoh RS monoD) 1);
+by (rtac (UnE RS subsetI) 1);ba 1;
+by (fast_tac (set_cs addSIs [cih]) 1);
+by (rtac (monoh RS monoD RS subsetD) 1);
+by (rtac Un_upper2 1);
+by (etac (monoh RS gfp_lemma2 RS subsetD) 1);
+val gfp_coind2 = result();
+
+val [gfph,monoh,caseh] = goal MT.thy 
+  "[| x:gfp(f); mono(f); !! y. y:f(gfp(f)) ==> P(y) |] ==> P(x)";
+by (rtac caseh 1);br subsetD 1;br gfp_lemma2 1;br monoh 1;br gfph 1;
+val gfp_elim2 =result();
+
+(* ############################################################ *)
+(* Expressions                                                  *)
+(* ############################################################ *)
+
+val e_injs = [e_const_inj, e_var_inj, e_fn_inj, e_fix_inj, e_app_inj];
+
+val e_disjs = 
+  [ e_disj_const_var, 
+    e_disj_const_fn, 
+    e_disj_const_fix, 
+    e_disj_const_app,
+    e_disj_var_fn, 
+    e_disj_var_fix, 
+    e_disj_var_app, 
+    e_disj_fn_fix, 
+    e_disj_fn_app, 
+    e_disj_fix_app
+  ];
+
+val e_disj_si = e_disjs @ (e_disjs RL [not_sym]);
+val e_disj_se = (e_disj_si RL [notE]);
+
+fun e_ext_cs cs = cs addSIs e_disj_si addSEs e_disj_se addSDs e_injs;
+
+(* ############################################################ *)
+(* Values                                                      *)
+(* ############################################################ *)
+
+val v_disjs = [v_disj_const_clos];
+val v_disj_si = v_disjs @ (v_disjs RL [not_sym]);
+val v_disj_se = (v_disj_si RL [notE]);
+
+val v_injs = [v_const_inj, v_clos_inj];
+
+fun v_ext_cs cs  = cs addSIs v_disj_si addSEs v_disj_se addSDs v_injs;
+
+(* ############################################################ *)
+(* Evaluations                                                  *)
+(* ############################################################ *)
+
+(* Monotonicity of eval_fun *)
+
+goalw MT.thy [mono_def, eval_fun_def] "mono(eval_fun)";
+by infsys_mono_tac;
+val eval_fun_mono = result();
+
+(* Introduction rules *)
+
+goalw MT.thy [eval_def, eval_rel_def] "ve |- e_const(c) ---> v_const(c)";
+by (rtac lfp_intro2 1);
+by (rtac eval_fun_mono 1);
+by (rewtac eval_fun_def);
+by (rtac CollectI 1);br disjI1 1;
+by (fast_tac HOL_cs 1);
+val eval_const = result();
+
+val prems = goalw MT.thy [eval_def, eval_rel_def] 
+  "ev:ve_dom(ve) ==> ve |- e_var(ev) ---> ve_app(ve,ev)";
+by (cut_facts_tac prems 1);
+by (rtac lfp_intro2 1);
+by (rtac eval_fun_mono 1);
+by (rewtac eval_fun_def);
+by (rtac CollectI 1);br disjI2 1;br disjI1 1;
+by (fast_tac HOL_cs 1);
+val eval_var = result();
+
+val prems = goalw MT.thy [eval_def, eval_rel_def] 
+  "ve |- fn ev => e ---> v_clos(<|ev,e,ve|>)";
+by (cut_facts_tac prems 1);
+by (rtac lfp_intro2 1);
+by (rtac eval_fun_mono 1);
+by (rewtac eval_fun_def);
+by (rtac CollectI 1);br disjI2 1;br disjI2 1;br disjI1 1;
+by (fast_tac HOL_cs 1);
+val eval_fn = result();
+
+val prems = goalw MT.thy [eval_def, eval_rel_def] 
+  " cl = <| ev1, e, ve + {ev2 |-> v_clos(cl)} |> ==> \
+\   ve |- fix ev2(ev1) = e ---> v_clos(cl)";
+by (cut_facts_tac prems 1);
+by (rtac lfp_intro2 1);
+by (rtac eval_fun_mono 1);
+by (rewtac eval_fun_def);
+by (rtac CollectI 1);br disjI2 1;br disjI2 1;br disjI2 1;br disjI1 1;
+by (fast_tac HOL_cs 1);
+val eval_fix = result();
+
+val prems = goalw MT.thy [eval_def, eval_rel_def]
+  " [| ve |- e1 ---> v_const(c1); ve |- e2 ---> v_const(c2) |] ==> \
+\   ve |- e1 @ e2 ---> v_const(c_app(c1,c2))";
+by (cut_facts_tac prems 1);
+by (rtac lfp_intro2 1);
+by (rtac eval_fun_mono 1);
+by (rewtac eval_fun_def);
+by (rtac CollectI 1);br disjI2 1;br disjI2 1;br disjI2 1;br disjI2 1;br disjI1 1;
+by (fast_tac HOL_cs 1);
+val eval_app1 = result();
+
+val prems = goalw MT.thy [eval_def, eval_rel_def] 
+  " [|  ve |- e1 ---> v_clos(<|xm,em,vem|>); \
+\       ve |- e2 ---> v2; \
+\       vem + {xm |-> v2} |- em ---> v \
+\   |] ==> \
+\   ve |- e1 @ e2 ---> v";
+by (cut_facts_tac prems 1);
+by (rtac lfp_intro2 1);
+by (rtac eval_fun_mono 1);
+by (rewtac eval_fun_def);
+by (rtac CollectI 1);br disjI2 1;br disjI2 1;br disjI2 1;br disjI2 1;br disjI2 1;
+by (fast_tac HOL_cs 1);
+val eval_app2 = result();
+
+(* Strong elimination, induction on evaluations *)
+
+val prems = goalw MT.thy [eval_def, eval_rel_def]
+  " [| ve |- e ---> v; \
+\      !!ve c. P(<<ve,e_const(c)>,v_const(c)>); \
+\      !!ev ve. ev:ve_dom(ve) ==> P(<<ve,e_var(ev)>,ve_app(ve,ev)>); \
+\      !!ev ve e. P(<<ve,fn ev => e>,v_clos(<|ev,e,ve|>)>); \
+\      !!ev1 ev2 ve cl e. \
+\        cl = <| ev1, e, ve + {ev2 |-> v_clos(cl)} |> ==> \
+\        P(<<ve,fix ev2(ev1) = e>,v_clos(cl)>); \
+\      !!ve c1 c2 e1 e2. \
+\        [| P(<<ve,e1>,v_const(c1)>); P(<<ve,e2>,v_const(c2)>) |] ==> \
+\        P(<<ve,e1 @ e2>,v_const(c_app(c1,c2))>); \
+\      !!ve vem xm e1 e2 em v v2. \
+\        [|  P(<<ve,e1>,v_clos(<|xm,em,vem|>)>); \
+\            P(<<ve,e2>,v2>); \
+\            P(<<vem + {xm |-> v2},em>,v>) \
+\        |] ==> \
+\        P(<<ve,e1 @ e2>,v>) \
+\   |] ==> \
+\   P(<<ve,e>,v>)";
+by (resolve_tac (prems RL [lfp_ind2]) 1);
+by (rtac eval_fun_mono 1);
+by (rewtac eval_fun_def);
+by (dtac CollectD 1);
+by (safe_tac HOL_cs);
+by (ALLGOALS (resolve_tac prems));
+by (ALLGOALS (fast_tac set_cs));
+val eval_ind0 = result();
+
+val prems = goal MT.thy 
+  " [| ve |- e ---> v; \
+\      !!ve c. P(ve,e_const(c),v_const(c)); \
+\      !!ev ve. ev:ve_dom(ve) ==> P(ve,e_var(ev),ve_app(ve,ev)); \
+\      !!ev ve e. P(ve,fn ev => e,v_clos(<|ev,e,ve|>)); \
+\      !!ev1 ev2 ve cl e. \
+\        cl = <| ev1, e, ve + {ev2 |-> v_clos(cl)} |> ==> \
+\        P(ve,fix ev2(ev1) = e,v_clos(cl)); \
+\      !!ve c1 c2 e1 e2. \
+\        [| P(ve,e1,v_const(c1)); P(ve,e2,v_const(c2)) |] ==> \
+\        P(ve,e1 @ e2,v_const(c_app(c1,c2))); \
+\      !!ve vem evm e1 e2 em v v2. \
+\        [|  P(ve,e1,v_clos(<|evm,em,vem|>)); \
+\            P(ve,e2,v2); \
+\            P(vem + {evm |-> v2},em,v) \
+\        |] ==> P(ve,e1 @ e2,v) \
+\   |] ==> P(ve,e,v)";
+by (res_inst_tac [("P","P")] infsys_pp2 1);
+by (rtac eval_ind0 1);
+by (ALLGOALS (rtac infsys_pp1));
+by (ALLGOALS (resolve_tac prems));
+by (REPEAT ((assume_tac 1) ORELSE (dtac infsys_pp2 1)));
+val eval_ind = result();
+
+(* ############################################################ *)
+(* Elaborations                                                 *)
+(* ############################################################ *)
+
+goalw MT.thy [mono_def, elab_fun_def] "mono(elab_fun)";
+by infsys_mono_tac;
+val elab_fun_mono = result();
+
+(* Introduction rules *)
+
+val prems = goalw MT.thy [elab_def, elab_rel_def] 
+  "c isof ty ==> te |- e_const(c) ===> ty";
+by (cut_facts_tac prems 1);
+by (rtac lfp_intro2 1);
+by (rtac elab_fun_mono 1);
+by (rewtac elab_fun_def);
+by (rtac CollectI 1);br disjI1 1;
+by (fast_tac HOL_cs 1);
+val elab_const = result();
+
+val prems = goalw MT.thy [elab_def, elab_rel_def] 
+  "x:te_dom(te) ==> te |- e_var(x) ===> te_app(te,x)";
+by (cut_facts_tac prems 1);
+by (rtac lfp_intro2 1);
+by (rtac elab_fun_mono 1);
+by (rewtac elab_fun_def);
+by (rtac CollectI 1);br disjI2 1;br disjI1 1;
+by (fast_tac HOL_cs 1);
+val elab_var = result();
+
+val prems = goalw MT.thy [elab_def, elab_rel_def] 
+  "te + {x |=> ty1} |- e ===> ty2 ==> te |- fn x => e ===> ty1->ty2";
+by (cut_facts_tac prems 1);
+by (rtac lfp_intro2 1);
+by (rtac elab_fun_mono 1);
+by (rewtac elab_fun_def);
+by (rtac CollectI 1);br disjI2 1;br disjI2 1;br disjI1 1;
+by (fast_tac HOL_cs 1);
+val elab_fn = result();
+
+val prems = goalw MT.thy [elab_def, elab_rel_def]
+  " te + {f |=> ty1->ty2} + {x |=> ty1} |- e ===> ty2 ==> \
+\   te |- fix f(x) = e ===> ty1->ty2";
+by (cut_facts_tac prems 1);
+by (rtac lfp_intro2 1);
+by (rtac elab_fun_mono 1);
+by (rewtac elab_fun_def);
+by (rtac CollectI 1);br disjI2 1;br disjI2 1;br disjI2 1;br disjI1 1;
+by (fast_tac HOL_cs 1);
+val elab_fix = result();
+
+val prems = goalw MT.thy [elab_def, elab_rel_def] 
+  " [| te |- e1 ===> ty1->ty2; te |- e2 ===> ty1 |] ==> \
+\   te |- e1 @ e2 ===> ty2";
+by (cut_facts_tac prems 1);
+by (rtac lfp_intro2 1);
+by (rtac elab_fun_mono 1);
+by (rewtac elab_fun_def);
+by (rtac CollectI 1);br disjI2 1;br disjI2 1;br disjI2 1;br disjI2 1;
+by (fast_tac HOL_cs 1);
+val elab_app = result();
+
+(* Strong elimination, induction on elaborations *)
+
+val prems = goalw MT.thy [elab_def, elab_rel_def]
+  " [| te |- e ===> t; \
+\      !!te c t. c isof t ==> P(<<te,e_const(c)>,t>); \
+\      !!te x. x:te_dom(te) ==> P(<<te,e_var(x)>,te_app(te,x)>); \
+\      !!te x e t1 t2. \
+\        [| te + {x |=> t1} |- e ===> t2; P(<<te + {x |=> t1},e>,t2>) |] ==> \
+\        P(<<te,fn x => e>,t1->t2>); \
+\      !!te f x e t1 t2. \
+\        [| te + {f |=> t1->t2} + {x |=> t1} |- e ===> t2; \
+\           P(<<te + {f |=> t1->t2} + {x |=> t1},e>,t2>) \
+\        |] ==> \
+\        P(<<te,fix f(x) = e>,t1->t2>); \
+\      !!te e1 e2 t1 t2. \
+\        [| te |- e1 ===> t1->t2; P(<<te,e1>,t1->t2>); \
+\           te |- e2 ===> t1; P(<<te,e2>,t1>) \
+\        |] ==> \
+\        P(<<te,e1 @ e2>,t2>) \
+\   |] ==> \
+\   P(<<te,e>,t>)";
+by (resolve_tac (prems RL [lfp_ind2]) 1);
+by (rtac elab_fun_mono 1);
+by (rewtac elab_fun_def);
+by (dtac CollectD 1);
+by (safe_tac HOL_cs);
+by (ALLGOALS (resolve_tac prems));
+by (ALLGOALS (fast_tac set_cs));
+val elab_ind0 = result();
+
+val prems = goal MT.thy
+  " [| te |- e ===> t; \
+\       !!te c t. c isof t ==> P(te,e_const(c),t); \
+\      !!te x. x:te_dom(te) ==> P(te,e_var(x),te_app(te,x)); \
+\      !!te x e t1 t2. \
+\        [| te + {x |=> t1} |- e ===> t2; P(te + {x |=> t1},e,t2) |] ==> \
+\        P(te,fn x => e,t1->t2); \
+\      !!te f x e t1 t2. \
+\        [| te + {f |=> t1->t2} + {x |=> t1} |- e ===> t2; \
+\           P(te + {f |=> t1->t2} + {x |=> t1},e,t2) \
+\        |] ==> \
+\        P(te,fix f(x) = e,t1->t2); \
+\      !!te e1 e2 t1 t2. \
+\        [| te |- e1 ===> t1->t2; P(te,e1,t1->t2); \
+\           te |- e2 ===> t1; P(te,e2,t1) \
+\        |] ==> \
+\        P(te,e1 @ e2,t2) \ 
+\   |] ==> \
+\   P(te,e,t)";
+by (res_inst_tac [("P","P")] infsys_pp2 1);
+by (rtac elab_ind0 1);
+by (ALLGOALS (rtac infsys_pp1));
+by (ALLGOALS (resolve_tac prems));
+by (REPEAT ((assume_tac 1) ORELSE (dtac infsys_pp2 1)));
+val elab_ind = result();
+
+(* Weak elimination, case analysis on elaborations *)
+
+val prems = goalw MT.thy [elab_def, elab_rel_def]
+  " [| te |- e ===> t; \
+\      !!te c t. c isof t ==> P(<<te,e_const(c)>,t>); \
+\      !!te x. x:te_dom(te) ==> P(<<te,e_var(x)>,te_app(te,x)>); \
+\      !!te x e t1 t2. \
+\        te + {x |=> t1} |- e ===> t2 ==> P(<<te,fn x => e>,t1->t2>); \
+\      !!te f x e t1 t2. \
+\        te + {f |=> t1->t2} + {x |=> t1} |- e ===> t2 ==> \
+\        P(<<te,fix f(x) = e>,t1->t2>); \
+\      !!te e1 e2 t1 t2. \
+\        [| te |- e1 ===> t1->t2; te |- e2 ===> t1 |] ==> \
+\        P(<<te,e1 @ e2>,t2>) \
+\   |] ==> \
+\   P(<<te,e>,t>)";
+by (resolve_tac (prems RL [lfp_elim2]) 1);
+by (rtac elab_fun_mono 1);
+by (rewtac elab_fun_def);
+by (dtac CollectD 1);
+by (safe_tac HOL_cs);
+by (ALLGOALS (resolve_tac prems));
+by (ALLGOALS (fast_tac set_cs));
+val elab_elim0 = result();
+
+val prems = goal MT.thy
+  " [| te |- e ===> t; \
+\       !!te c t. c isof t ==> P(te,e_const(c),t); \
+\      !!te x. x:te_dom(te) ==> P(te,e_var(x),te_app(te,x)); \
+\      !!te x e t1 t2. \
+\        te + {x |=> t1} |- e ===> t2 ==> P(te,fn x => e,t1->t2); \
+\      !!te f x e t1 t2. \
+\        te + {f |=> t1->t2} + {x |=> t1} |- e ===> t2 ==> \
+\        P(te,fix f(x) = e,t1->t2); \
+\      !!te e1 e2 t1 t2. \
+\        [| te |- e1 ===> t1->t2; te |- e2 ===> t1 |] ==> \
+\        P(te,e1 @ e2,t2) \ 
+\   |] ==> \
+\   P(te,e,t)";
+by (res_inst_tac [("P","P")] infsys_pp2 1);
+by (rtac elab_elim0 1);
+by (ALLGOALS (rtac infsys_pp1));
+by (ALLGOALS (resolve_tac prems));
+by (REPEAT ((assume_tac 1) ORELSE (dtac infsys_pp2 1)));
+val elab_elim = result();
+
+(* Elimination rules for each expression *)
+
+fun elab_e_elim_tac p = 
+  ( (rtac elab_elim 1) THEN 
+    (resolve_tac p 1) THEN 
+    (REPEAT (fast_tac (e_ext_cs HOL_cs) 1))
+  );
+
+val prems = goal MT.thy "te |- e ===> t ==> (e = e_const(c) --> c isof t)";
+by (elab_e_elim_tac prems);
+val elab_const_elim_lem = result();
+
+val prems = goal MT.thy "te |- e_const(c) ===> t ==> c isof t";
+by (cut_facts_tac prems 1);
+by (dtac elab_const_elim_lem 1);
+by (fast_tac prop_cs 1);
+val elab_const_elim = result();
+
+val prems = goal MT.thy 
+  "te |- e ===> t ==> (e = e_var(x) --> t=te_app(te,x) & x:te_dom(te))";
+by (elab_e_elim_tac prems);
+val elab_var_elim_lem = result();
+
+val prems = goal MT.thy 
+  "te |- e_var(ev) ===> t ==> t=te_app(te,ev) & ev : te_dom(te)";
+by (cut_facts_tac prems 1);
+by (dtac elab_var_elim_lem 1);
+by (fast_tac prop_cs 1);
+val elab_var_elim = result();
+
+val prems = goal MT.thy 
+  " te |- e ===> t ==> \
+\   ( e = fn x1 => e1 --> \
+\     (? t1 t2.t=t_fun(t1,t2) & te + {x1 |=> t1} |- e1 ===> t2) \
+\   )";
+by (elab_e_elim_tac prems);
+val elab_fn_elim_lem = result();
+
+val prems = goal MT.thy 
+  " te |- fn x1 => e1 ===> t ==> \
+\   (? t1 t2. t=t1->t2 & te + {x1 |=> t1} |- e1 ===> t2)";
+by (cut_facts_tac prems 1);
+by (dtac elab_fn_elim_lem 1);
+by (fast_tac prop_cs 1);
+val elab_fn_elim = result();
+
+val prems = goal MT.thy 
+  " te |- e ===> t ==> \
+\   (e = fix f(x) = e1 --> \
+\   (? t1 t2. t=t1->t2 & te + {f |=> t1->t2} + {x |=> t1} |- e1 ===> t2))"; 
+by (elab_e_elim_tac prems);
+val elab_fix_elim_lem = result();
+
+val prems = goal MT.thy 
+  " te |- fix ev1(ev2) = e1 ===> t ==> \
+\   (? t1 t2. t=t1->t2 & te + {ev1 |=> t1->t2} + {ev2 |=> t1} |- e1 ===> t2)";
+by (cut_facts_tac prems 1);
+by (dtac elab_fix_elim_lem 1);
+by (fast_tac prop_cs 1);
+val elab_fix_elim = result();
+
+val prems = goal MT.thy 
+  " te |- e ===> t2 ==> \
+\   (e = e1 @ e2 --> (? t1 . te |- e1 ===> t1->t2 & te |- e2 ===> t1))"; 
+by (elab_e_elim_tac prems);
+val elab_app_elim_lem = result();
+
+val prems = goal MT.thy 
+  "te |- e1 @ e2 ===> t2 ==> (? t1 . te |- e1 ===> t1->t2 & te |- e2 ===> t1)"; 
+by (cut_facts_tac prems 1);
+by (dtac elab_app_elim_lem 1);
+by (fast_tac prop_cs 1);
+val elab_app_elim = result();
+
+(* ############################################################ *)
+(* The extended correspondence relation                       *)
+(* ############################################################ *)
+
+(* Monotonicity of hasty_fun *)
+
+goalw MT.thy [mono_def,MT.hasty_fun_def] "mono(hasty_fun)";
+by infsys_mono_tac;
+val mono_hasty_fun =  result();
+
+(* 
+  Because hasty_rel has been defined as the greatest fixpoint of hasty_fun it 
+  enjoys two strong indtroduction (co-induction) rules and an elimination rule.
+*)
+
+(* First strong indtroduction (co-induction) rule for hasty_rel *)
+
+val prems = goalw MT.thy [hasty_rel_def] "c isof t ==> <v_const(c),t> : hasty_rel";
+by (cut_facts_tac prems 1);
+by (rtac gfp_coind2 1);
+by (rewtac MT.hasty_fun_def);
+by (rtac CollectI 1);br disjI1 1;
+by (fast_tac HOL_cs 1);
+by (rtac mono_hasty_fun 1);
+val hasty_rel_const_coind = result();
+
+(* Second strong introduction (co-induction) rule for hasty_rel *)
+
+val prems = goalw MT.thy [hasty_rel_def]
+  " [|  te |- fn ev => e ===> t; \
+\       ve_dom(ve) = te_dom(te); \
+\       ! ev1. \
+\         ev1:ve_dom(ve) --> \
+\         <ve_app(ve,ev1),te_app(te,ev1)> : {<v_clos(<|ev,e,ve|>),t>} Un hasty_rel \
+\   |] ==> \
+\   <v_clos(<|ev,e,ve|>),t> : hasty_rel";
+by (cut_facts_tac prems 1);
+by (rtac gfp_coind2 1);
+by (rewtac hasty_fun_def);
+by (rtac CollectI 1);br disjI2 1;
+by (fast_tac HOL_cs 1);
+by (rtac mono_hasty_fun 1);
+val hasty_rel_clos_coind = result();
+
+(* Elimination rule for hasty_rel *)
+
+val prems = goalw MT.thy [hasty_rel_def]
+  " [| !! c t.c isof t ==> P(<v_const(c),t>); \
+\      !! te ev e t ve. \
+\        [| te |- fn ev => e ===> t; \
+\           ve_dom(ve) = te_dom(te); \
+\           !ev1.ev1:ve_dom(ve) --> <ve_app(ve,ev1),te_app(te,ev1)> : hasty_rel \
+\        |] ==> P(<v_clos(<|ev,e,ve|>),t>); \
+\      <v,t> : hasty_rel \
+\   |] ==> P(<v,t>)";
+by (cut_facts_tac prems 1);
+by (etac gfp_elim2 1);
+by (rtac mono_hasty_fun 1);
+by (rewtac hasty_fun_def);
+by (dtac CollectD 1);
+by (fold_goals_tac [hasty_fun_def]);
+by (safe_tac HOL_cs);
+by (ALLGOALS (resolve_tac prems));
+by (ALLGOALS (fast_tac set_cs));
+val hasty_rel_elim0 = result();
+
+val prems = goal MT.thy 
+  " [| <v,t> : hasty_rel; \
+\      !! c t.c isof t ==> P(v_const(c),t); \
+\      !! te ev e t ve. \
+\        [| te |- fn ev => e ===> t; \
+\           ve_dom(ve) = te_dom(te); \
+\           !ev1.ev1:ve_dom(ve) --> <ve_app(ve,ev1),te_app(te,ev1)> : hasty_rel \
+\        |] ==> P(v_clos(<|ev,e,ve|>),t) \
+\   |] ==> P(v,t)";
+by (res_inst_tac [("P","P")] infsys_p2 1);
+by (rtac hasty_rel_elim0 1);
+by (ALLGOALS (rtac infsys_p1));
+by (ALLGOALS (resolve_tac prems));
+by (REPEAT ((assume_tac 1) ORELSE (dtac infsys_p2 1)));
+val hasty_rel_elim = result();
+
+(* Introduction rules for hasty *)
+
+val prems = goalw MT.thy [hasty_def] "c isof t ==> v_const(c) hasty t";
+by (resolve_tac (prems RL [hasty_rel_const_coind]) 1);
+val hasty_const = result();
+
+val prems = goalw MT.thy [hasty_def,hasty_env_def] 
+  "te |- fn ev => e ===> t & ve hastyenv te ==> v_clos(<|ev,e,ve|>) hasty t";
+by (cut_facts_tac prems 1);
+by (rtac hasty_rel_clos_coind 1);
+by (ALLGOALS (fast_tac set_cs));
+val hasty_clos = result();
+
+(* Elimination on constants for hasty *)
+
+val prems = goalw MT.thy [hasty_def] 
+  "v hasty t ==> (!c.(v = v_const(c) --> c isof t))";  
+by (cut_facts_tac prems 1);
+by (rtac hasty_rel_elim 1);
+by (ALLGOALS (fast_tac (v_ext_cs HOL_cs)));
+val hasty_elim_const_lem = result();
+
+val prems = goal MT.thy "v_const(c) hasty t ==> c isof t";
+by (cut_facts_tac (prems RL [hasty_elim_const_lem]) 1);
+by (fast_tac HOL_cs 1);
+val hasty_elim_const = result();
+
+(* Elimination on closures for hasty *)
+
+val prems = goalw MT.thy [hasty_env_def,hasty_def] 
+  " v hasty t ==> \
+\   ! x e ve. \
+\     v=v_clos(<|x,e,ve|>) --> (? te.te |- fn x => e ===> t & ve hastyenv te)";
+by (cut_facts_tac prems 1);
+by (rtac hasty_rel_elim 1);
+by (ALLGOALS (fast_tac (v_ext_cs HOL_cs)));
+val hasty_elim_clos_lem = result();
+
+val prems = goal MT.thy 
+  "v_clos(<|ev,e,ve|>) hasty t ==> ? te.te |- fn ev => e ===> t & ve hastyenv te ";
+by (cut_facts_tac (prems RL [hasty_elim_clos_lem]) 1);
+by (fast_tac HOL_cs 1);
+val hasty_elim_clos = result();
+
+(* ############################################################ *)
+(* The pointwise extension of hasty to environments             *)
+(* ############################################################ *)
+
+val prems = goal MT.thy
+  "[| ve hastyenv te; v hasty t |] ==> \
+\  ve + {ev |-> v} hastyenv te + {ev |=> t}";
+by (cut_facts_tac prems 1);
+by (SELECT_GOAL (rewtac hasty_env_def) 1);
+by (safe_tac HOL_cs);
+by (rtac (ve_dom_owr RS ssubst) 1);
+by (rtac (te_dom_owr RS ssubst) 1);
+by (etac subst 1);br refl 1;
+
+by (dtac (ve_dom_owr RS subst) 1);back();back();back();
+by (etac UnSE 1);be conjE 1;
+by (dtac notsingletonI 1);bd not_sym 1;
+by (rtac (ve_app_owr2 RS ssubst) 1);ba 1;
+by (rtac (te_app_owr2 RS ssubst) 1);ba 1;
+by (fast_tac HOL_cs 1);
+by (dtac singletonD 1);by (hyp_subst_tac 1);
+
+by (rtac (ve_app_owr1 RS ssubst) 1);
+by (rtac (te_app_owr1 RS ssubst) 1);
+by (assume_tac 1);
+val hasty_env1 = result();
+
+(* ############################################################ *)
+(* The Consistency theorem                                      *)
+(* ############################################################ *)
+
+val prems = goal MT.thy 
+  "[| ve hastyenv te ; te |- e_const(c) ===> t |] ==> v_const(c) hasty t";
+by (cut_facts_tac prems 1);
+by (dtac elab_const_elim 1);
+by (etac hasty_const 1);
+val consistency_const = result();
+
+val prems = goalw MT.thy [hasty_env_def]
+  " [| ev : ve_dom(ve); ve hastyenv te ; te |- e_var(ev) ===> t |] ==> \
+\   ve_app(ve,ev) hasty t";
+by (cut_facts_tac prems 1);
+by (dtac elab_var_elim 1);
+by (fast_tac HOL_cs 1);
+val consistency_var = result();
+
+val prems = goal MT.thy
+  " [| ve hastyenv te ; te |- fn ev => e ===> t |] ==> \
+\   v_clos(<| ev, e, ve |>) hasty t";
+by (cut_facts_tac prems 1);
+by (rtac hasty_clos 1);
+by (fast_tac prop_cs 1);
+val consistency_fn = result();
+
+val prems = goalw MT.thy [hasty_env_def,hasty_def]
+  " [| cl = <| ev1, e, ve + { ev2 |-> v_clos(cl) } |>; \
+\      ve hastyenv te ; \
+\      te |- fix ev2  ev1  = e ===> t \
+\   |] ==> \
+\   v_clos(cl) hasty t";
+by (cut_facts_tac prems 1);
+by (dtac elab_fix_elim 1);
+by (safe_tac HOL_cs);
+by ((forward_tac [ssubst] 1) THEN (assume_tac 2) THEN 
+    (rtac hasty_rel_clos_coind 1));
+by (etac elab_fn 1);
+
+by (rtac (ve_dom_owr RS ssubst) 1);
+by (rtac (te_dom_owr RS ssubst) 1);
+by ((etac subst 1) THEN (rtac refl 1));
+
+by (rtac (ve_dom_owr RS ssubst) 1);
+by (safe_tac HOL_cs);
+by (dtac (Un_commute RS subst) 1);
+by (etac UnSE 1);
+
+by (safe_tac HOL_cs);
+by (dtac notsingletonI 1);bd not_sym 1;
+by (rtac (ve_app_owr2 RS ssubst) 1);ba 1;
+by (rtac (te_app_owr2 RS ssubst) 1);ba 1;
+by (fast_tac set_cs 1);
+
+by (etac singletonE 1);
+by (hyp_subst_tac 1);
+by (rtac (ve_app_owr1 RS ssubst) 1);
+by (rtac (te_app_owr1 RS ssubst) 1);
+by (etac subst 1);
+by (fast_tac set_cs 1);
+val consistency_fix = result();
+
+val prems = goal MT.thy 
+  " [| ! t te. ve hastyenv te  --> te |- e1 ===> t --> v_const(c1) hasty t; \
+\      ! t te. ve hastyenv te  --> te |- e2 ===> t --> v_const(c2) hasty t; \
+\      ve hastyenv te ; te |- e1 @ e2 ===> t \
+\   |] ==> \
+\   v_const(c_app(c1,c2)) hasty t";
+by (cut_facts_tac prems 1);
+by (dtac elab_app_elim 1);
+by (safe_tac HOL_cs);
+by (rtac hasty_const 1);
+by (rtac isof_app 1);
+by (rtac hasty_elim_const 1);
+by (fast_tac HOL_cs 1);
+by (rtac hasty_elim_const 1);
+by (fast_tac HOL_cs 1);
+val consistency_app1 = result();
+
+val prems = goal MT.thy 
+  " [| ! t te. \
+\        ve hastyenv te  --> \
+\        te |- e1 ===> t --> v_clos(<|evm, em, vem|>) hasty t; \
+\      ! t te. ve hastyenv te  --> te |- e2 ===> t --> v2 hasty t; \
+\      ! t te. \
+\        vem + { evm |-> v2 } hastyenv te  --> te |- em ===> t --> v hasty t; \
+\      ve hastyenv te ; \
+\      te |- e1 @ e2 ===> t \
+\   |] ==> \
+\   v hasty t";
+by (cut_facts_tac prems 1);
+by (dtac elab_app_elim 1);
+by (safe_tac HOL_cs);
+by ((etac allE 1) THEN (etac allE 1) THEN (etac impE 1));ba 1;be impE 1;ba 1;
+by ((etac allE 1) THEN (etac allE 1) THEN (etac impE 1));ba 1;be impE 1;ba 1;
+by (dtac hasty_elim_clos 1);
+by (safe_tac HOL_cs);
+by (dtac elab_fn_elim 1);
+by (safe_tac HOL_cs);
+by (dtac t_fun_inj 1);
+by (safe_tac prop_cs);
+by ((dtac hasty_env1 1) THEN (assume_tac 1) THEN (fast_tac HOL_cs 1));
+val consistency_app2 = result();
+
+val prems = goal MT.thy 
+  "ve |- e ---> v ==> (! t te. ve hastyenv te --> te |- e ===> t --> v hasty t)";
+
+(* Proof by induction on the structure of evaluations *)
+
+by (resolve_tac (prems RL [eval_ind]) 1);
+by (safe_tac HOL_cs);
+
+by (rtac consistency_const 1);ba 1;ba 1;
+by (rtac consistency_var 1);ba 1;ba 1;ba 1;
+by (rtac consistency_fn 1);ba 1;ba 1;
+by (rtac consistency_fix 1);ba 1;ba 1;ba 1;
+by (rtac consistency_app1 1);ba 1;ba 1;ba 1;ba 1;
+by (rtac consistency_app2 1);ba 5;ba 4;ba 3;ba 2;ba 1;
+val consistency = result();
+
+(* ############################################################ *)
+(* The Basic Consistency theorem                                *)
+(* ############################################################ *)
+
+val prems = goalw MT.thy [isof_env_def,hasty_env_def] 
+  "ve isofenv te ==> ve hastyenv te";
+by (cut_facts_tac prems 1);
+by (safe_tac HOL_cs);
+by (etac allE 1);be impE 1;ba 1;be exE 1;be conjE 1;
+by (dtac hasty_const 1);
+by ((rtac ssubst 1) THEN (assume_tac 1) THEN (assume_tac 1));
+val basic_consistency_lem = result();
+
+val prems = goal MT.thy
+  "[| ve isofenv te; ve |- e ---> v_const(c); te |- e ===> t |] ==> c isof t";
+by (cut_facts_tac prems 1);
+by (rtac hasty_elim_const 1);
+by (dtac consistency 1);
+by (fast_tac (HOL_cs addSIs [basic_consistency_lem]) 1);
+val basic_consistency = result();
+
+