--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/ex/mt.thy Tue Nov 09 11:08:13 1993 +0100
@@ -0,0 +1,286 @@
+(* Title: HOL/ex/mt.thy
+ ID: $Id$
+ Author: Jacob Frost, Cambridge University Computer Laboratory
+ Copyright 1993 University of Cambridge
+
+Based upon the article
+ Robin Milner and Mads Tofte,
+ Co-induction in Relational Semantics,
+ Theoretical Computer Science 87 (1991), pages 209-220.
+
+Written up as
+ Jacob Frost, A Case Study of Co_induction in Isabelle/HOL
+ Report 308, Computer Lab, University of Cambridge (1993).
+*)
+
+MT = Gfp +
+
+types
+ Const 0
+
+ ExVar 0
+ Ex 0
+
+ TyConst 0
+ Ty 0
+
+ Clos 0
+ Val 0
+
+ ValEnv 0
+ TyEnv 0
+
+arities
+ Const :: term
+
+ ExVar :: term
+ Ex :: term
+
+ TyConst :: term
+ Ty :: term
+
+ Clos :: term
+ Val :: term
+
+ ValEnv :: term
+ TyEnv :: term
+
+consts
+ c_app :: "[Const, Const] => Const"
+
+ e_const :: "Const => Ex"
+ e_var :: "ExVar => Ex"
+ e_fn :: "[ExVar, Ex] => Ex" ("fn _ => _")
+ e_fix :: "[ExVar, ExVar, Ex] => Ex" ("fix _ ( _ ) = _")
+ e_app :: "[Ex, Ex] => Ex" ("_ @ _")
+ e_const_fst :: "Ex => Const"
+
+ t_const :: "TyConst => Ty"
+ t_fun :: "[Ty, Ty] => Ty" ("_ -> _")
+
+ v_const :: "Const => Val"
+ v_clos :: "Clos => Val"
+
+ ve_emp :: "ValEnv"
+ ve_owr :: "[ValEnv, ExVar, Val] => ValEnv" ("_ + { _ |-> _ }" [0,0,0] 1000)
+ ve_dom :: "ValEnv => ExVar set"
+ ve_app :: "[ValEnv, ExVar] => Val"
+
+ clos_mk :: "[ExVar, Ex, ValEnv] => Clos" ("<| _ , _ , _ |>" [0,0,0] 1000)
+
+ te_emp :: "TyEnv"
+ te_owr :: "[TyEnv, ExVar, Ty] => TyEnv" ("_ + { _ |=> _ }" [0,0,0] 1000)
+ te_app :: "[TyEnv, ExVar] => Ty"
+ te_dom :: "TyEnv => ExVar set"
+
+ eval_fun :: "((ValEnv * Ex) * Val) set => ((ValEnv * Ex) * Val) set"
+ eval_rel :: "((ValEnv * Ex) * Val) set"
+ eval :: "[ValEnv, Ex, Val] => bool" ("_ |- _ ---> _" [0,0,0] 1000)
+
+ elab_fun :: "((TyEnv * Ex) * Ty) set => ((TyEnv * Ex) * Ty) set"
+ elab_rel :: "((TyEnv * Ex) * Ty) set"
+ elab :: "[TyEnv, Ex, Ty] => bool" ("_ |- _ ===> _" [0,0,0] 1000)
+
+ isof :: "[Const, Ty] => bool" ("_ isof _")
+ isof_env :: "[ValEnv,TyEnv] => bool" ("_ isofenv _")
+
+ hasty_fun :: "(Val * Ty) set => (Val * Ty) set"
+ hasty_rel :: "(Val * Ty) set"
+ hasty :: "[Val, Ty] => bool" ("_ hasty _")
+ hasty_env :: "[ValEnv,TyEnv] => bool" ("_ hastyenv _ ")
+
+rules
+
+(*
+ Expression constructors must be injective, distinct and it must be possible
+ to do induction over expressions.
+*)
+
+(* All the constructors are injective *)
+
+ e_const_inj "e_const(c1) = e_const(c2) ==> c1 = c2"
+ e_var_inj "e_var(ev1) = e_var(ev2) ==> ev1 = ev2"
+ e_fn_inj "fn ev1 => e1 = fn ev2 => e2 ==> ev1 = ev2 & e1 = e2"
+ e_fix_inj
+ " fix ev11e(v12) = e1 = fix ev21(ev22) = e2 ==> \
+\ ev11 = ev21 & ev12 = ev22 & e1 = e2 \
+\ "
+ e_app_inj "e11 @ e12 = e21 @ e22 ==> e11 = e21 & e12 = e22"
+
+(* All constructors are distinct *)
+
+ e_disj_const_var "~e_const(c) = e_var(ev)"
+ e_disj_const_fn "~e_const(c) = fn ev => e"
+ e_disj_const_fix "~e_const(c) = fix ev1(ev2) = e"
+ e_disj_const_app "~e_const(c) = e1 @ e2"
+ e_disj_var_fn "~e_var(ev1) = fn ev2 => e"
+ e_disj_var_fix "~e_var(ev) = fix ev1(ev2) = e"
+ e_disj_var_app "~e_var(ev) = e1 @ e2"
+ e_disj_fn_fix "~fn ev1 => e1 = fix ev21(ev22) = e2"
+ e_disj_fn_app "~fn ev1 => e1 = e21 @ e22"
+ e_disj_fix_app "~fix ev11(ev12) = e1 = e21 @ e22"
+
+(* Strong elimination, induction on expressions *)
+
+ e_ind
+ " [| !!ev. P(e_var(ev)); \
+\ !!c. P(e_const(c)); \
+\ !!ev e. P(e) ==> P(fn ev => e); \
+\ !!ev1 ev2 e. P(e) ==> P(fix ev1(ev2) = e); \
+\ !!e1 e2. P(e1) ==> P(e2) ==> P(e1 @ e2) \
+\ |] ==> \
+\ P(e) \
+\ "
+
+(* Types - same scheme as for expressions *)
+
+(* All constructors are injective *)
+
+ t_const_inj "t_const(c1) = t_const(c2) ==> c1 = c2"
+ t_fun_inj "t11 -> t12 = t21 -> t22 ==> t11 = t21 & t12 = t22"
+
+(* All constructors are distinct, not needed so far ... *)
+
+(* Strong elimination, induction on types *)
+
+ t_ind
+ "[| !!p. P(t_const(p)); !!t1 t2. P(t1) ==> P(t2) ==> P(t_fun(t1,t2)) |] \
+\ ==> P(t)"
+
+
+(* Values - same scheme again *)
+
+(* All constructors are injective *)
+
+ v_const_inj "v_const(c1) = v_const(c2) ==> c1 = c2"
+ v_clos_inj
+ " v_clos(<|ev1,e1,ve1|>) = v_clos(<|ev2,e2,ve2|>) ==> \
+\ ev1 = ev2 & e1 = e2 & ve1 = ve2"
+
+(* All constructors are distinct *)
+
+ v_disj_const_clos "~v_const(c) = v_clos(cl)"
+
+(* Strong elimination, induction on values, not needed yet ... *)
+
+
+(*
+ Value environments bind variables to values. Only the following trivial
+ properties are needed.
+*)
+
+ ve_dom_owr "ve_dom(ve + {ev |-> v}) = ve_dom(ve) Un {ev}"
+
+ ve_app_owr1 "ve_app(ve + {ev |-> v},ev)=v"
+ ve_app_owr2 "~ev1=ev2 ==> ve_app(ve+{ev1 |-> v},ev2)=ve_app(ve,ev2)"
+
+
+(* Type Environments bind variables to types. The following trivial
+properties are needed. *)
+
+ te_dom_owr "te_dom(te + {ev |=> t}) = te_dom(te) Un {ev}"
+
+ te_app_owr1 "te_app(te + {ev |=> t},ev)=t"
+ te_app_owr2 "~ev1=ev2 ==> te_app(te+{ev1 |=> t},ev2)=te_app(te,ev2)"
+
+
+(* The dynamic semantics is defined inductively by a set of inference
+rules. These inference rules allows one to draw conclusions of the form ve
+|- e ---> v, read the expression e evaluates to the value v in the value
+environment ve. Therefore the relation _ |- _ ---> _ is defined in Isabelle
+as the least fixpoint of the functor eval_fun below. From this definition
+introduction rules and a strong elimination (induction) rule can be
+derived.
+*)
+
+ eval_fun_def
+ " eval_fun(s) == \
+\ { pp. \
+\ (? ve c. pp=<<ve,e_const(c)>,v_const(c)>) | \
+\ (? ve x. pp=<<ve,e_var(x)>,ve_app(ve,x)> & x:ve_dom(ve)) |\
+\ (? ve e x. pp=<<ve,fn x => e>,v_clos(<|x,e,ve|>)>)| \
+\ ( ? ve e x f cl. \
+\ pp=<<ve,fix f(x) = e>,v_clos(cl)> & \
+\ cl=<|x, e, ve+{f |-> v_clos(cl)} |> \
+\ ) | \
+\ ( ? ve e1 e2 c1 c2. \
+\ pp=<<ve,e1 @ e2>,v_const(c_app(c1,c2))> & \
+\ <<ve,e1>,v_const(c1)>:s & <<ve,e2>,v_const(c2)>:s \
+\ ) | \
+\ ( ? ve vem e1 e2 em xm v v2. \
+\ pp=<<ve,e1 @ e2>,v> & \
+\ <<ve,e1>,v_clos(<|xm,em,vem|>)>:s & \
+\ <<ve,e2>,v2>:s & \
+\ <<vem+{xm |-> v2},em>,v>:s \
+\ ) \
+\ }"
+
+ eval_rel_def "eval_rel == lfp(eval_fun)"
+ eval_def "ve |- e ---> v == <<ve,e>,v>:eval_rel"
+
+(* The static semantics is defined in the same way as the dynamic
+semantics. The relation te |- e ===> t express the expression e has the
+type t in the type environment te.
+*)
+
+ elab_fun_def
+ "elab_fun(s) == \
+\ { pp. \
+\ (? te c t. pp=<<te,e_const(c)>,t> & c isof t) | \
+\ (? te x. pp=<<te,e_var(x)>,te_app(te,x)> & x:te_dom(te)) | \
+\ (? te x e t1 t2. pp=<<te,fn x => e>,t1->t2> & <<te+{x |=> t1},e>,t2>:s) | \
+\ (? te f x e t1 t2. \
+\ pp=<<te,fix f(x)=e>,t1->t2> & <<te+{f |=> t1->t2}+{x |=> t1},e>,t2>:s \
+\ ) | \
+\ (? te e1 e2 t1 t2. \
+\ pp=<<te,e1 @ e2>,t2> & <<te,e1>,t1->t2>:s & <<te,e2>,t1>:s \
+\ ) \
+\ }"
+
+ elab_rel_def "elab_rel == lfp(elab_fun)"
+ elab_def "te |- e ===> t == <<te,e>,t>:elab_rel"
+
+(* The original correspondence relation *)
+
+ isof_env_def
+ " ve isofenv te == \
+\ ve_dom(ve) = te_dom(te) & \
+\ ( ! x. \
+\ x:ve_dom(ve) --> \
+\ (? c.ve_app(ve,x) = v_const(c) & c isof te_app(te,x)) \
+\ ) \
+\ "
+
+ isof_app "[| c1 isof t1->t2; c2 isof t1 |] ==> c_app(c1,c2) isof t2"
+
+(* The extented correspondence relation *)
+
+ hasty_fun_def
+ " hasty_fun(r) == \
+\ { p. \
+\ ( ? c t. p = <v_const(c),t> & c isof t) | \
+\ ( ? ev e ve t te. \
+\ p = <v_clos(<|ev,e,ve|>),t> & \
+\ te |- fn ev => e ===> t & \
+\ ve_dom(ve) = te_dom(te) & \
+\ (! ev1.ev1:ve_dom(ve) --> <ve_app(ve,ev1),te_app(te,ev1)> : r) \
+\ ) \
+\ } \
+\ "
+
+ hasty_rel_def "hasty_rel == gfp(hasty_fun)"
+ hasty_def "v hasty t == <v,t> : hasty_rel"
+ hasty_env_def
+ " ve hastyenv te == \
+\ ve_dom(ve) = te_dom(te) & \
+\ (! x. x: ve_dom(ve) --> ve_app(ve,x) hasty te_app(te,x))"
+
+end
+
+
+
+
+
+
+
+