--- a/Arith.ML Tue Oct 24 14:59:17 1995 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,373 +0,0 @@
-(* Title: HOL/Arith.ML
- ID: $Id$
- Author: Lawrence C Paulson, Cambridge University Computer Laboratory
- Copyright 1993 University of Cambridge
-
-Proofs about elementary arithmetic: addition, multiplication, etc.
-Tests definitions and simplifier.
-*)
-
-open Arith;
-
-(*** Basic rewrite rules for the arithmetic operators ***)
-
-val [pred_0, pred_Suc] = nat_recs pred_def;
-val [add_0,add_Suc] = nat_recs add_def;
-val [mult_0,mult_Suc] = nat_recs mult_def;
-
-(** Difference **)
-
-val diff_0 = diff_def RS def_nat_rec_0;
-
-qed_goalw "diff_0_eq_0" Arith.thy [diff_def, pred_def]
- "0 - n = 0"
- (fn _ => [nat_ind_tac "n" 1, ALLGOALS(asm_simp_tac nat_ss)]);
-
-(*Must simplify BEFORE the induction!! (Else we get a critical pair)
- Suc(m) - Suc(n) rewrites to pred(Suc(m) - n) *)
-qed_goalw "diff_Suc_Suc" Arith.thy [diff_def, pred_def]
- "Suc(m) - Suc(n) = m - n"
- (fn _ =>
- [simp_tac nat_ss 1, nat_ind_tac "n" 1, ALLGOALS(asm_simp_tac nat_ss)]);
-
-(*** Simplification over add, mult, diff ***)
-
-val arith_simps =
- [pred_0, pred_Suc, add_0, add_Suc, mult_0, mult_Suc,
- diff_0, diff_0_eq_0, diff_Suc_Suc];
-
-val arith_ss = nat_ss addsimps arith_simps;
-
-(**** Inductive properties of the operators ****)
-
-(*** Addition ***)
-
-qed_goal "add_0_right" Arith.thy "m + 0 = m"
- (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac arith_ss)]);
-
-qed_goal "add_Suc_right" Arith.thy "m + Suc(n) = Suc(m+n)"
- (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac arith_ss)]);
-
-val arith_ss = arith_ss addsimps [add_0_right,add_Suc_right];
-
-(*Associative law for addition*)
-qed_goal "add_assoc" Arith.thy "(m + n) + k = m + ((n + k)::nat)"
- (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac arith_ss)]);
-
-(*Commutative law for addition*)
-qed_goal "add_commute" Arith.thy "m + n = n + (m::nat)"
- (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac arith_ss)]);
-
-qed_goal "add_left_commute" Arith.thy "x+(y+z)=y+((x+z)::nat)"
- (fn _ => [rtac (add_commute RS trans) 1, rtac (add_assoc RS trans) 1,
- rtac (add_commute RS arg_cong) 1]);
-
-(*Addition is an AC-operator*)
-val add_ac = [add_assoc, add_commute, add_left_commute];
-
-goal Arith.thy "!!k::nat. (k + m = k + n) = (m=n)";
-by (nat_ind_tac "k" 1);
-by (simp_tac arith_ss 1);
-by (asm_simp_tac arith_ss 1);
-qed "add_left_cancel";
-
-goal Arith.thy "!!k::nat. (m + k = n + k) = (m=n)";
-by (nat_ind_tac "k" 1);
-by (simp_tac arith_ss 1);
-by (asm_simp_tac arith_ss 1);
-qed "add_right_cancel";
-
-goal Arith.thy "!!k::nat. (k + m <= k + n) = (m<=n)";
-by (nat_ind_tac "k" 1);
-by (simp_tac arith_ss 1);
-by (asm_simp_tac (arith_ss addsimps [Suc_le_mono]) 1);
-qed "add_left_cancel_le";
-
-goal Arith.thy "!!k::nat. (k + m < k + n) = (m<n)";
-by (nat_ind_tac "k" 1);
-by (simp_tac arith_ss 1);
-by (asm_simp_tac arith_ss 1);
-qed "add_left_cancel_less";
-
-(*** Multiplication ***)
-
-(*right annihilation in product*)
-qed_goal "mult_0_right" Arith.thy "m * 0 = 0"
- (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac arith_ss)]);
-
-(*right Sucessor law for multiplication*)
-qed_goal "mult_Suc_right" Arith.thy "m * Suc(n) = m + (m * n)"
- (fn _ => [nat_ind_tac "m" 1,
- ALLGOALS(asm_simp_tac (arith_ss addsimps add_ac))]);
-
-val arith_ss = arith_ss addsimps [mult_0_right,mult_Suc_right];
-
-(*Commutative law for multiplication*)
-qed_goal "mult_commute" Arith.thy "m * n = n * (m::nat)"
- (fn _ => [nat_ind_tac "m" 1, ALLGOALS (asm_simp_tac arith_ss)]);
-
-(*addition distributes over multiplication*)
-qed_goal "add_mult_distrib" Arith.thy "(m + n)*k = (m*k) + ((n*k)::nat)"
- (fn _ => [nat_ind_tac "m" 1,
- ALLGOALS(asm_simp_tac (arith_ss addsimps add_ac))]);
-
-qed_goal "add_mult_distrib2" Arith.thy "k*(m + n) = (k*m) + ((k*n)::nat)"
- (fn _ => [nat_ind_tac "m" 1,
- ALLGOALS(asm_simp_tac (arith_ss addsimps add_ac))]);
-
-val arith_ss = arith_ss addsimps [add_mult_distrib,add_mult_distrib2];
-
-(*Associative law for multiplication*)
-qed_goal "mult_assoc" Arith.thy "(m * n) * k = m * ((n * k)::nat)"
- (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac arith_ss)]);
-
-qed_goal "mult_left_commute" Arith.thy "x*(y*z) = y*((x*z)::nat)"
- (fn _ => [rtac trans 1, rtac mult_commute 1, rtac trans 1,
- rtac mult_assoc 1, rtac (mult_commute RS arg_cong) 1]);
-
-val mult_ac = [mult_assoc,mult_commute,mult_left_commute];
-
-(*** Difference ***)
-
-qed_goal "diff_self_eq_0" Arith.thy "m - m = 0"
- (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac arith_ss)]);
-
-(*Addition is the inverse of subtraction: if n<=m then n+(m-n) = m. *)
-val [prem] = goal Arith.thy "[| ~ m<n |] ==> n+(m-n) = (m::nat)";
-by (rtac (prem RS rev_mp) 1);
-by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
-by (ALLGOALS(asm_simp_tac arith_ss));
-qed "add_diff_inverse";
-
-
-(*** Remainder ***)
-
-goal Arith.thy "m - n < Suc(m)";
-by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
-by (etac less_SucE 3);
-by (ALLGOALS(asm_simp_tac arith_ss));
-qed "diff_less_Suc";
-
-goal Arith.thy "!!m::nat. m - n <= m";
-by (res_inst_tac [("m","m"), ("n","n")] diff_induct 1);
-by (ALLGOALS (asm_simp_tac arith_ss));
-by (etac le_trans 1);
-by (simp_tac (HOL_ss addsimps [le_eq_less_or_eq, lessI]) 1);
-qed "diff_le_self";
-
-goal Arith.thy "!!n::nat. (n+m) - n = m";
-by (nat_ind_tac "n" 1);
-by (ALLGOALS (asm_simp_tac arith_ss));
-qed "diff_add_inverse";
-
-goal Arith.thy "!!n::nat. n - (n+m) = 0";
-by (nat_ind_tac "n" 1);
-by (ALLGOALS (asm_simp_tac arith_ss));
-qed "diff_add_0";
-
-(*In ordinary notation: if 0<n and n<=m then m-n < m *)
-goal Arith.thy "!!m. [| 0<n; ~ m<n |] ==> m - n < m";
-by (subgoal_tac "0<n --> ~ m<n --> m - n < m" 1);
-by (fast_tac HOL_cs 1);
-by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
-by (ALLGOALS(asm_simp_tac(arith_ss addsimps [diff_less_Suc])));
-qed "div_termination";
-
-val wf_less_trans = wf_pred_nat RS wf_trancl RSN (2, def_wfrec RS trans);
-
-goalw Nat.thy [less_def] "<m,n> : pred_nat^+ = (m<n)";
-by (rtac refl 1);
-qed "less_eq";
-
-goal Arith.thy "!!m. m<n ==> m mod n = m";
-by (rtac (mod_def RS wf_less_trans) 1);
-by(asm_simp_tac HOL_ss 1);
-qed "mod_less";
-
-goal Arith.thy "!!m. [| 0<n; ~m<n |] ==> m mod n = (m-n) mod n";
-by (rtac (mod_def RS wf_less_trans) 1);
-by(asm_simp_tac (nat_ss addsimps [div_termination, cut_apply, less_eq]) 1);
-qed "mod_geq";
-
-
-(*** Quotient ***)
-
-goal Arith.thy "!!m. m<n ==> m div n = 0";
-by (rtac (div_def RS wf_less_trans) 1);
-by(asm_simp_tac nat_ss 1);
-qed "div_less";
-
-goal Arith.thy "!!M. [| 0<n; ~m<n |] ==> m div n = Suc((m-n) div n)";
-by (rtac (div_def RS wf_less_trans) 1);
-by(asm_simp_tac (nat_ss addsimps [div_termination, cut_apply, less_eq]) 1);
-qed "div_geq";
-
-(*Main Result about quotient and remainder.*)
-goal Arith.thy "!!m. 0<n ==> (m div n)*n + m mod n = m";
-by (res_inst_tac [("n","m")] less_induct 1);
-by (rename_tac "k" 1); (*Variable name used in line below*)
-by (case_tac "k<n" 1);
-by (ALLGOALS (asm_simp_tac(arith_ss addsimps (add_ac @
- [mod_less, mod_geq, div_less, div_geq,
- add_diff_inverse, div_termination]))));
-qed "mod_div_equality";
-
-
-(*** More results about difference ***)
-
-val [prem] = goal Arith.thy "m < Suc(n) ==> m-n = 0";
-by (rtac (prem RS rev_mp) 1);
-by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
-by (ALLGOALS (asm_simp_tac arith_ss));
-qed "less_imp_diff_is_0";
-
-val prems = goal Arith.thy "m-n = 0 --> n-m = 0 --> m=n";
-by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
-by (REPEAT(simp_tac arith_ss 1 THEN TRY(atac 1)));
-qed "diffs0_imp_equal_lemma";
-
-(* [| m-n = 0; n-m = 0 |] ==> m=n *)
-bind_thm ("diffs0_imp_equal", (diffs0_imp_equal_lemma RS mp RS mp));
-
-val [prem] = goal Arith.thy "m<n ==> 0<n-m";
-by (rtac (prem RS rev_mp) 1);
-by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
-by (ALLGOALS(asm_simp_tac arith_ss));
-qed "less_imp_diff_positive";
-
-val [prem] = goal Arith.thy "n < Suc(m) ==> Suc(m)-n = Suc(m-n)";
-by (rtac (prem RS rev_mp) 1);
-by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
-by (ALLGOALS(asm_simp_tac arith_ss));
-qed "Suc_diff_n";
-
-goal Arith.thy "Suc(m)-n = if(m<n, 0, Suc(m-n))";
-by(simp_tac (nat_ss addsimps [less_imp_diff_is_0, not_less_eq, Suc_diff_n]
- setloop (split_tac [expand_if])) 1);
-qed "if_Suc_diff_n";
-
-goal Arith.thy "P(k) --> (!n. P(Suc(n))--> P(n)) --> P(k-i)";
-by (res_inst_tac [("m","k"),("n","i")] diff_induct 1);
-by (ALLGOALS (strip_tac THEN' simp_tac arith_ss THEN' TRY o fast_tac HOL_cs));
-qed "zero_induct_lemma";
-
-val prems = goal Arith.thy "[| P(k); !!n. P(Suc(n)) ==> P(n) |] ==> P(0)";
-by (rtac (diff_self_eq_0 RS subst) 1);
-by (rtac (zero_induct_lemma RS mp RS mp) 1);
-by (REPEAT (ares_tac ([impI,allI]@prems) 1));
-qed "zero_induct";
-
-(*13 July 1992: loaded in 105.7s*)
-
-(**** Additional theorems about "less than" ****)
-
-goal Arith.thy "!!m. m<n --> (? k. n=Suc(m+k))";
-by (nat_ind_tac "n" 1);
-by (ALLGOALS(simp_tac arith_ss));
-by (REPEAT_FIRST (ares_tac [conjI, impI]));
-by (res_inst_tac [("x","0")] exI 2);
-by (simp_tac arith_ss 2);
-by (safe_tac HOL_cs);
-by (res_inst_tac [("x","Suc(k)")] exI 1);
-by (simp_tac arith_ss 1);
-val less_eq_Suc_add_lemma = result();
-
-(*"m<n ==> ? k. n = Suc(m+k)"*)
-bind_thm ("less_eq_Suc_add", less_eq_Suc_add_lemma RS mp);
-
-
-goal Arith.thy "n <= ((m + n)::nat)";
-by (nat_ind_tac "m" 1);
-by (ALLGOALS(simp_tac arith_ss));
-by (etac le_trans 1);
-by (rtac (lessI RS less_imp_le) 1);
-qed "le_add2";
-
-goal Arith.thy "n <= ((n + m)::nat)";
-by (simp_tac (arith_ss addsimps add_ac) 1);
-by (rtac le_add2 1);
-qed "le_add1";
-
-bind_thm ("less_add_Suc1", (lessI RS (le_add1 RS le_less_trans)));
-bind_thm ("less_add_Suc2", (lessI RS (le_add2 RS le_less_trans)));
-
-(*"i <= j ==> i <= j+m"*)
-bind_thm ("trans_le_add1", le_add1 RSN (2,le_trans));
-
-(*"i <= j ==> i <= m+j"*)
-bind_thm ("trans_le_add2", le_add2 RSN (2,le_trans));
-
-(*"i < j ==> i < j+m"*)
-bind_thm ("trans_less_add1", le_add1 RSN (2,less_le_trans));
-
-(*"i < j ==> i < m+j"*)
-bind_thm ("trans_less_add2", le_add2 RSN (2,less_le_trans));
-
-goal Arith.thy "!!k::nat. m <= n ==> m <= n+k";
-by (eresolve_tac [le_trans] 1);
-by (resolve_tac [le_add1] 1);
-qed "le_imp_add_le";
-
-goal Arith.thy "!!k::nat. m < n ==> m < n+k";
-by (eresolve_tac [less_le_trans] 1);
-by (resolve_tac [le_add1] 1);
-qed "less_imp_add_less";
-
-goal Arith.thy "m+k<=n --> m<=(n::nat)";
-by (nat_ind_tac "k" 1);
-by (ALLGOALS (asm_simp_tac arith_ss));
-by (fast_tac (HOL_cs addDs [Suc_leD]) 1);
-val add_leD1_lemma = result();
-bind_thm ("add_leD1", add_leD1_lemma RS mp);;
-
-goal Arith.thy "!!k l::nat. [| k<l; m+l = k+n |] ==> m<n";
-by (safe_tac (HOL_cs addSDs [less_eq_Suc_add]));
-by (asm_full_simp_tac
- (HOL_ss addsimps ([add_Suc_right RS sym, add_left_cancel] @add_ac)) 1);
-by (eresolve_tac [subst] 1);
-by (simp_tac (arith_ss addsimps [less_add_Suc1]) 1);
-qed "less_add_eq_less";
-
-
-(** Monotonicity of addition (from ZF/Arith) **)
-
-(** Monotonicity results **)
-
-(*strict, in 1st argument*)
-goal Arith.thy "!!i j k::nat. i < j ==> i + k < j + k";
-by (nat_ind_tac "k" 1);
-by (ALLGOALS (asm_simp_tac arith_ss));
-qed "add_less_mono1";
-
-(*strict, in both arguments*)
-goal Arith.thy "!!i j k::nat. [|i < j; k < l|] ==> i + k < j + l";
-by (rtac (add_less_mono1 RS less_trans) 1);
-by (REPEAT (etac asm_rl 1));
-by (nat_ind_tac "j" 1);
-by (ALLGOALS(asm_simp_tac arith_ss));
-qed "add_less_mono";
-
-(*A [clumsy] way of lifting < monotonicity to <= monotonicity *)
-val [lt_mono,le] = goal Arith.thy
- "[| !!i j::nat. i<j ==> f(i) < f(j); \
-\ i <= j \
-\ |] ==> f(i) <= (f(j)::nat)";
-by (cut_facts_tac [le] 1);
-by (asm_full_simp_tac (HOL_ss addsimps [le_eq_less_or_eq]) 1);
-by (fast_tac (HOL_cs addSIs [lt_mono]) 1);
-qed "less_mono_imp_le_mono";
-
-(*non-strict, in 1st argument*)
-goal Arith.thy "!!i j k::nat. i<=j ==> i + k <= j + k";
-by (res_inst_tac [("f", "%j.j+k")] less_mono_imp_le_mono 1);
-by (eresolve_tac [add_less_mono1] 1);
-by (assume_tac 1);
-qed "add_le_mono1";
-
-(*non-strict, in both arguments*)
-goal Arith.thy "!!k l::nat. [|i<=j; k<=l |] ==> i + k <= j + l";
-by (etac (add_le_mono1 RS le_trans) 1);
-by (simp_tac (HOL_ss addsimps [add_commute]) 1);
-(*j moves to the end because it is free while k, l are bound*)
-by (eresolve_tac [add_le_mono1] 1);
-qed "add_le_mono";