--- a/Finite.ML Tue Oct 24 14:59:17 1995 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,84 +0,0 @@
-(* Title: HOL/Finite.thy
- ID: $Id$
- Author: Lawrence C Paulson, Cambridge University Computer Laboratory
- Copyright 1994 University of Cambridge
-
-Finite powerset operator
-*)
-
-open Finite;
-
-goalw Finite.thy Fin.defs "!!A B. A<=B ==> Fin(A) <= Fin(B)";
-br lfp_mono 1;
-by (REPEAT (ares_tac basic_monos 1));
-qed "Fin_mono";
-
-goalw Finite.thy Fin.defs "Fin(A) <= Pow(A)";
-by (fast_tac (set_cs addSIs [lfp_lowerbound]) 1);
-qed "Fin_subset_Pow";
-
-(* A : Fin(B) ==> A <= B *)
-val FinD = Fin_subset_Pow RS subsetD RS PowD;
-
-(*Discharging ~ x:y entails extra work*)
-val major::prems = goal Finite.thy
- "[| F:Fin(A); P({}); \
-\ !!F x. [| x:A; F:Fin(A); x~:F; P(F) |] ==> P(insert(x,F)) \
-\ |] ==> P(F)";
-by (rtac (major RS Fin.induct) 1);
-by (excluded_middle_tac "a:b" 2);
-by (etac (insert_absorb RS ssubst) 3 THEN assume_tac 3); (*backtracking!*)
-by (REPEAT (ares_tac prems 1));
-qed "Fin_induct";
-
-(** Simplification for Fin **)
-
-val Fin_ss = set_ss addsimps Fin.intrs;
-
-(*The union of two finite sets is finite*)
-val major::prems = goal Finite.thy
- "[| F: Fin(A); G: Fin(A) |] ==> F Un G : Fin(A)";
-by (rtac (major RS Fin_induct) 1);
-by (ALLGOALS (asm_simp_tac (Fin_ss addsimps (prems@[Un_insert_left]))));
-qed "Fin_UnI";
-
-(*Every subset of a finite set is finite*)
-val [subs,fin] = goal Finite.thy "[| A<=B; B: Fin(M) |] ==> A: Fin(M)";
-by (EVERY1 [subgoal_tac "ALL C. C<=B --> C: Fin(M)",
- rtac mp, etac spec,
- rtac subs]);
-by (rtac (fin RS Fin_induct) 1);
-by (simp_tac (Fin_ss addsimps [subset_Un_eq]) 1);
-by (safe_tac (set_cs addSDs [subset_insert_iff RS iffD1]));
-by (eres_inst_tac [("t","C")] (insert_Diff RS subst) 2);
-by (ALLGOALS (asm_simp_tac Fin_ss));
-qed "Fin_subset";
-
-(*The image of a finite set is finite*)
-val major::_ = goal Finite.thy
- "F: Fin(A) ==> h``F : Fin(h``A)";
-by (rtac (major RS Fin_induct) 1);
-by (simp_tac Fin_ss 1);
-by (asm_simp_tac (set_ss addsimps [image_eqI RS Fin.insertI, image_insert]) 1);
-qed "Fin_imageI";
-
-val major::prems = goal Finite.thy
- "[| c: Fin(A); b: Fin(A); \
-\ P(b); \
-\ !!(x::'a) y. [| x:A; y: Fin(A); x:y; P(y) |] ==> P(y-{x}) \
-\ |] ==> c<=b --> P(b-c)";
-by (rtac (major RS Fin_induct) 1);
-by (rtac (Diff_insert RS ssubst) 2);
-by (ALLGOALS (asm_simp_tac
- (Fin_ss addsimps (prems@[Diff_subset RS Fin_subset]))));
-qed "Fin_empty_induct_lemma";
-
-val prems = goal Finite.thy
- "[| b: Fin(A); \
-\ P(b); \
-\ !!x y. [| x:A; y: Fin(A); x:y; P(y) |] ==> P(y-{x}) \
-\ |] ==> P({})";
-by (rtac (Diff_cancel RS subst) 1);
-by (rtac (Fin_empty_induct_lemma RS mp) 1);
-by (REPEAT (ares_tac (subset_refl::prems) 1));
-qed "Fin_empty_induct";