HOL.thy
changeset 252 a4dc62a46ee4
parent 251 f04b33ce250f
child 253 132634d24019
--- a/HOL.thy	Tue Oct 24 14:59:17 1995 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,165 +0,0 @@
-(*  Title:      HOL/HOL.thy
-    ID:         $Id$
-    Author:     Tobias Nipkow
-    Copyright   1993  University of Cambridge
-
-Higher-Order Logic
-*)
-
-HOL = Pure +
-
-classes
-  term < logic
-
-axclass
-  plus < term
-
-axclass
-  minus < term
-
-axclass
-  times < term
-
-default
-  term
-
-types
-  bool
-
-arities
-  fun :: (term, term) term
-  bool :: term
-
-
-consts
-
-  (* Constants *)
-
-  Trueprop      :: "bool => prop"                     ("(_)" 5)
-  not           :: "bool => bool"                     ("~ _" [40] 40)
-  True, False   :: "bool"
-  if            :: "[bool, 'a, 'a] => 'a"
-  Inv           :: "('a => 'b) => ('b => 'a)"
-
-  (* Binders *)
-
-  Eps           :: "('a => bool) => 'a"               (binder "@" 10)
-  All           :: "('a => bool) => bool"             (binder "! " 10)
-  Ex            :: "('a => bool) => bool"             (binder "? " 10)
-  Ex1           :: "('a => bool) => bool"             (binder "?! " 10)
-  Let           :: "['a, 'a => 'b] => 'b"
-
-  (* Infixes *)
-
-  o             :: "['b => 'c, 'a => 'b, 'a] => 'c"   (infixr 50)
-  "="           :: "['a, 'a] => bool"                 (infixl 50)
-(*"~="          :: "['a, 'a] => bool"                 (infixl 50)*)
-  "&"           :: "[bool, bool] => bool"             (infixr 35)
-  "|"           :: "[bool, bool] => bool"             (infixr 30)
-  "-->"         :: "[bool, bool] => bool"             (infixr 25)
-
-  (* Overloaded Constants *)
-
-  "+"           :: "['a::plus, 'a] => 'a"             (infixl 65)
-  "-"           :: "['a::minus, 'a] => 'a"            (infixl 65)
-  "*"           :: "['a::times, 'a] => 'a"            (infixl 70)
-
-
-types
-  letbinds  letbind
-  case_syn  cases_syn
-
-syntax
-
-  "~="          :: "['a, 'a] => bool"                 (infixl 50)
-
-  (* Alternative Quantifiers *)
-
-  "*All"        :: "[idts, bool] => bool"             ("(3ALL _./ _)" 10)
-  "*Ex"         :: "[idts, bool] => bool"             ("(3EX _./ _)" 10)
-  "*Ex1"        :: "[idts, bool] => bool"             ("(3EX! _./ _)" 10)
-
-  (* Let expressions *)
-
-  "_bind"       :: "[idt, 'a] => letbind"             ("(2_ =/ _)" 10)
-  ""            :: "letbind => letbinds"              ("_")
-  "_binds"      :: "[letbind, letbinds] => letbinds"  ("_;/ _")
-  "_Let"        :: "[letbinds, 'a] => 'a"             ("(let (_)/ in (_))" 10)
-
-  (* Case expressions *)
-
-  "@case"       :: "['a, cases_syn] => 'b"            ("(case _ of/ _)" 10)
-  "@case1"      :: "['a, 'b] => case_syn"             ("(2_ =>/ _)" 10)
-  ""            :: "case_syn => cases_syn"            ("_")
-  "@case2"      :: "[case_syn, cases_syn] => cases_syn"   ("_/ | _")
-
-translations
-  "x ~= y"      == "~ (x = y)"
-  "ALL xs. P"   => "! xs. P"
-  "EX xs. P"    => "? xs. P"
-  "EX! xs. P"   => "?! xs. P"
-  "_Let(_binds(b, bs), e)"  == "_Let(b, _Let(bs, e))"
-  "let x = a in e"          == "Let(a, %x. e)"
-
-
-rules
-
-  eq_reflection "(x=y) ==> (x==y)"
-
-  (* Basic Rules *)
-
-  refl          "t = (t::'a)"
-  subst         "[| s = t; P(s) |] ==> P(t::'a)"
-  ext           "(!!x::'a. (f(x)::'b) = g(x)) ==> (%x.f(x)) = (%x.g(x))"
-  selectI       "P(x::'a) ==> P(@x.P(x))"
-
-  impI          "(P ==> Q) ==> P-->Q"
-  mp            "[| P-->Q;  P |] ==> Q"
-
-defs
-
-  True_def      "True      == ((%x::bool.x)=(%x.x))"
-  All_def       "All(P)    == (P = (%x.True))"
-  Ex_def        "Ex(P)     == P(@x.P(x))"
-  False_def     "False     == (!P.P)"
-  not_def       "~ P       == P-->False"
-  and_def       "P & Q     == !R. (P-->Q-->R) --> R"
-  or_def        "P | Q     == !R. (P-->R) --> (Q-->R) --> R"
-  Ex1_def       "Ex1(P)    == ? x. P(x) & (! y. P(y) --> y=x)"
-
-rules
-  (* Axioms *)
-
-  iff           "(P-->Q) --> (Q-->P) --> (P=Q)"
-  True_or_False "(P=True) | (P=False)"
-
-defs
-  (* Misc Definitions *)
-
-  Let_def       "Let(s, f) == f(s)"
-  Inv_def       "Inv(f::'a=>'b)  == (% y. @x. f(x)=y)"
-  o_def         "(f::'b=>'c) o g == (%(x::'a). f(g(x)))"
-  if_def        "if(P,x,y) == @z::'a. (P=True --> z=x) & (P=False --> z=y)"
-
-end
-
-
-ML
-
-(** Choice between the HOL and Isabelle style of quantifiers **)
-
-val HOL_quantifiers = ref true;
-
-fun alt_ast_tr' (name, alt_name) =
-  let
-    fun ast_tr' (*name*) args =
-      if ! HOL_quantifiers then raise Match
-      else Syntax.mk_appl (Syntax.Constant alt_name) args;
-  in
-    (name, ast_tr')
-  end;
-
-
-val print_ast_translation =
-  map alt_ast_tr' [("! ", "*All"), ("? ", "*Ex"), ("?! ", "*Ex1")];
-