--- a/IMP/Denotation.thy Tue Oct 24 14:59:17 1995 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,46 +0,0 @@
-(* Title: HOL/IMP/Denotation.thy
- ID: $Id$
- Author: Heiko Loetzbeyer & Robert Sandner, TUM
- Copyright 1994 TUM
-
-Denotational semantics of expressions & commands
-*)
-
-Denotation = Com +
-
-types com_den = "(state*state)set"
-consts
- A :: "aexp => state => nat"
- B :: "bexp => state => bool"
- C :: "com => com_den"
- Gamma :: "[bexp,com_den] => (com_den => com_den)"
-
-primrec A aexp
- A_nat "A(N(n)) = (%s. n)"
- A_loc "A(X(x)) = (%s. s(x))"
- A_op1 "A(Op1(f,a)) = (%s. f(A(a,s)))"
- A_op2 "A(Op2(f,a0,a1)) = (%s. f(A(a0,s),A(a1,s)))"
-
-primrec B bexp
- B_true "B(true) = (%s. True)"
- B_false "B(false) = (%s. False)"
- B_op "B(ROp(f,a0,a1)) = (%s. f(A(a0,s),A(a1,s)))"
- B_not "B(noti(b)) = (%s. ~B(b,s))"
- B_and "B(b0 andi b1) = (%s. B(b0,s) & B(b1,s))"
- B_or "B(b0 ori b1) = (%s. B(b0,s) | B(b1,s))"
-
-defs
- Gamma_def "Gamma(b,cd) ==
- (%phi.{st. st : (phi O cd) & B(b,fst(st))} Un
- {st. st : id & ~B(b,fst(st))})"
-
-primrec C com
- C_skip "C(skip) = id"
- C_assign "C(x := a) = {st . snd(st) = fst(st)[A(a,fst(st))/x]}"
- C_comp "C(c0 ; c1) = C(c1) O C(c0)"
- C_if "C(ifc b then c0 else c1) =
- {st. st:C(c0) & B(b,fst(st))} Un
- {st. st:C(c1) & ~B(b,fst(st))}"
- C_while "C(while b do c) = lfp(Gamma(b,C(c)))"
-
-end