Integ/Equiv.thy
changeset 252 a4dc62a46ee4
parent 251 f04b33ce250f
child 253 132634d24019
--- a/Integ/Equiv.thy	Tue Oct 24 14:59:17 1995 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,28 +0,0 @@
-(*  Title: 	Equiv.thy
-    ID:         $Id$
-    Authors: 	Riccardo Mattolini, Dip. Sistemi e Informatica
-        	Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1994 Universita' di Firenze
-    Copyright   1993  University of Cambridge
-
-Equivalence relations in Higher-Order Set Theory 
-*)
-
-Equiv = Relation +
-consts
-    refl,equiv 	::      "['a set,('a*'a) set]=>bool"
-    sym         ::      "('a*'a) set=>bool"
-    "'/"        ::      "['a set,('a*'a) set]=>'a set set"  (infixl 90) 
-                        (*set of equiv classes*)
-    congruent	::	"[('a*'a) set,'a=>'b]=>bool"
-    congruent2  ::      "[('a*'a) set,['a,'a]=>'b]=>bool"
-
-defs
-    refl_def      "refl(A,r) == r <= Sigma(A,%x.A) & (ALL x: A. <x,x> : r)"
-    sym_def       "sym(r)    == ALL x y. <x,y>: r --> <y,x>: r"
-    equiv_def     "equiv(A,r) == refl(A,r) & sym(r) & trans(r)"
-    quotient_def  "A/r == UN x:A. {r^^{x}}"  
-    congruent_def   "congruent(r,b)  == ALL y z. <y,z>:r --> b(y)=b(z)"
-    congruent2_def  "congruent2(r,b) == ALL y1 z1 y2 z2. 
-           <y1,z1>:r --> <y2,z2>:r --> b(y1,y2) = b(z1,z2)"
-end