--- a/Integ/Relation.ML Tue Oct 24 14:59:17 1995 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,98 +0,0 @@
-(* Title: Relation.ML
- ID: $Id$
- Authors: Riccardo Mattolini, Dip. Sistemi e Informatica
- Lawrence C Paulson, Cambridge University Computer Laboratory
- Copyright 1994 Universita' di Firenze
- Copyright 1993 University of Cambridge
-
-Functions represented as relations in HOL Set Theory
-*)
-
-val RSLIST = curry (op MRS);
-
-open Relation;
-
-goalw Relation.thy [converse_def] "!!a b r. <a,b>:r ==> <b,a>:converse(r)";
-by (simp_tac prod_ss 1);
-by (fast_tac set_cs 1);
-qed "converseI";
-
-goalw Relation.thy [converse_def] "!!a b r. <a,b> : converse(r) ==> <b,a> : r";
-by (fast_tac comp_cs 1);
-qed "converseD";
-
-qed_goalw "converseE" Relation.thy [converse_def]
- "[| yx : converse(r); \
-\ !!x y. [| yx=<y,x>; <x,y>:r |] ==> P \
-\ |] ==> P"
- (fn [major,minor]=>
- [ (rtac (major RS CollectE) 1),
- (REPEAT (eresolve_tac [bexE,exE, conjE, minor] 1)),
- (hyp_subst_tac 1),
- (assume_tac 1) ]);
-
-val converse_cs = comp_cs addSIs [converseI]
- addSEs [converseD,converseE];
-
-qed_goalw "Domain_iff" Relation.thy [Domain_def]
- "a: Domain(r) = (EX y. <a,y>: r)"
- (fn _=> [ (fast_tac comp_cs 1) ]);
-
-qed_goal "DomainI" Relation.thy "!!a b r. <a,b>: r ==> a: Domain(r)"
- (fn _ => [ (etac (exI RS (Domain_iff RS iffD2)) 1) ]);
-
-qed_goal "DomainE" Relation.thy
- "[| a : Domain(r); !!y. <a,y>: r ==> P |] ==> P"
- (fn prems=>
- [ (rtac (Domain_iff RS iffD1 RS exE) 1),
- (REPEAT (ares_tac prems 1)) ]);
-
-qed_goalw "RangeI" Relation.thy [Range_def] "!!a b r.<a,b>: r ==> b : Range(r)"
- (fn _ => [ (etac (converseI RS DomainI) 1) ]);
-
-qed_goalw "RangeE" Relation.thy [Range_def]
- "[| b : Range(r); !!x. <x,b>: r ==> P |] ==> P"
- (fn major::prems=>
- [ (rtac (major RS DomainE) 1),
- (resolve_tac prems 1),
- (etac converseD 1) ]);
-
-(*** Image of a set under a function/relation ***)
-
-qed_goalw "Image_iff" Relation.thy [Image_def]
- "b : r^^A = (? x:A. <x,b>:r)"
- (fn _ => [ fast_tac (comp_cs addIs [RangeI]) 1 ]);
-
-qed_goal "Image_singleton_iff" Relation.thy
- "(b : r^^{a}) = (<a,b>:r)"
- (fn _ => [ rtac (Image_iff RS trans) 1,
- fast_tac comp_cs 1 ]);
-
-qed_goalw "ImageI" Relation.thy [Image_def]
- "!!a b r. [| <a,b>: r; a:A |] ==> b : r^^A"
- (fn _ => [ (REPEAT (ares_tac [CollectI,RangeI,bexI] 1)),
- (resolve_tac [conjI ] 1),
- (resolve_tac [RangeI] 1),
- (REPEAT (fast_tac set_cs 1))]);
-
-qed_goalw "ImageE" Relation.thy [Image_def]
- "[| b: r^^A; !!x.[| <x,b>: r; x:A |] ==> P |] ==> P"
- (fn major::prems=>
- [ (rtac (major RS CollectE) 1),
- (safe_tac set_cs),
- (etac RangeE 1),
- (rtac (hd prems) 1),
- (REPEAT (etac bexE 1 ORELSE ares_tac prems 1)) ]);
-
-qed_goal "Image_subset" Relation.thy
- "!!A B r. r <= Sigma(A,%x.B) ==> r^^C <= B"
- (fn _ =>
- [ (rtac subsetI 1),
- (REPEAT (eresolve_tac [asm_rl, ImageE, subsetD RS SigmaD2] 1)) ]);
-
-val rel_cs = converse_cs addSIs [converseI]
- addIs [ImageI, DomainI, RangeI]
- addSEs [ImageE, DomainE, RangeE];
-
-val rel_eq_cs = rel_cs addSIs [equalityI];
-