Sexp.thy
changeset 252 a4dc62a46ee4
parent 251 f04b33ce250f
child 253 132634d24019
--- a/Sexp.thy	Tue Oct 24 14:59:17 1995 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,40 +0,0 @@
-(*  Title: 	HOL/Sexp
-    ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1992  University of Cambridge
-
-S-expressions, general binary trees for defining recursive data structures
-*)
-
-Sexp = Univ +
-consts
-  sexp      :: "'a item set"
-
-  sexp_case :: "['a=>'b, nat=>'b, ['a item, 'a item]=>'b, 
-                'a item] => 'b"
-
-  sexp_rec  :: "['a item, 'a=>'b, nat=>'b, 	
-                ['a item, 'a item, 'b, 'b]=>'b] => 'b"
-  
-  pred_sexp :: "('a item * 'a item)set"
-
-inductive "sexp"
-  intrs
-    LeafI  "Leaf(a): sexp"
-    NumbI  "Numb(a): sexp"
-    SconsI "[| M: sexp;  N: sexp |] ==> M$N : sexp"
-
-defs
-
-  sexp_case_def	
-   "sexp_case(c,d,e,M) == @ z. (? x.   M=Leaf(x) & z=c(x))  
-                            | (? k.   M=Numb(k) & z=d(k))  
-                            | (? N1 N2. M = N1 $ N2  & z=e(N1,N2))"
-
-  pred_sexp_def
-     "pred_sexp == UN M: sexp. UN N: sexp. {<M, M$N>, <N, M$N>}"
-
-  sexp_rec_def
-   "sexp_rec(M,c,d,e) == wfrec(pred_sexp, M,  
-             %M g. sexp_case(c, d, %N1 N2. e(N1, N2, g(N1), g(N2)), M))"
-end