Sum.ML
changeset 252 a4dc62a46ee4
parent 251 f04b33ce250f
child 253 132634d24019
--- a/Sum.ML	Tue Oct 24 14:59:17 1995 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,204 +0,0 @@
-(*  Title: 	HOL/Sum.ML
-    ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1991  University of Cambridge
-
-For Sum.thy.  The disjoint sum of two types
-*)
-
-open Sum;
-
-(** Inl_Rep and Inr_Rep: Representations of the constructors **)
-
-(*This counts as a non-emptiness result for admitting 'a+'b as a type*)
-goalw Sum.thy [Sum_def] "Inl_Rep(a) : Sum";
-by (EVERY1 [rtac CollectI, rtac disjI1, rtac exI, rtac refl]);
-qed "Inl_RepI";
-
-goalw Sum.thy [Sum_def] "Inr_Rep(b) : Sum";
-by (EVERY1 [rtac CollectI, rtac disjI2, rtac exI, rtac refl]);
-qed "Inr_RepI";
-
-goal Sum.thy "inj_onto(Abs_Sum,Sum)";
-by (rtac inj_onto_inverseI 1);
-by (etac Abs_Sum_inverse 1);
-qed "inj_onto_Abs_Sum";
-
-(** Distinctness of Inl and Inr **)
-
-goalw Sum.thy [Inl_Rep_def, Inr_Rep_def] "Inl_Rep(a) ~= Inr_Rep(b)";
-by (EVERY1 [rtac notI,
-	    etac (fun_cong RS fun_cong RS fun_cong RS iffE), 
-	    rtac (notE RS ccontr),  etac (mp RS conjunct2), 
-	    REPEAT o (ares_tac [refl,conjI]) ]);
-qed "Inl_Rep_not_Inr_Rep";
-
-goalw Sum.thy [Inl_def,Inr_def] "Inl(a) ~= Inr(b)";
-by (rtac (inj_onto_Abs_Sum RS inj_onto_contraD) 1);
-by (rtac Inl_Rep_not_Inr_Rep 1);
-by (rtac Inl_RepI 1);
-by (rtac Inr_RepI 1);
-qed "Inl_not_Inr";
-
-bind_thm ("Inl_neq_Inr", (Inl_not_Inr RS notE));
-val Inr_neq_Inl = sym RS Inl_neq_Inr;
-
-goal Sum.thy "(Inl(a)=Inr(b)) = False";
-by (simp_tac (HOL_ss addsimps [Inl_not_Inr]) 1);
-qed "Inl_Inr_eq";
-
-goal Sum.thy "(Inr(b)=Inl(a))  =  False";
-by (simp_tac (HOL_ss addsimps [Inl_not_Inr RS not_sym]) 1);
-qed "Inr_Inl_eq";
-
-
-(** Injectiveness of Inl and Inr **)
-
-val [major] = goalw Sum.thy [Inl_Rep_def] "Inl_Rep(a) = Inl_Rep(c) ==> a=c";
-by (rtac (major RS fun_cong RS fun_cong RS fun_cong RS iffE) 1);
-by (fast_tac HOL_cs 1);
-qed "Inl_Rep_inject";
-
-val [major] = goalw Sum.thy [Inr_Rep_def] "Inr_Rep(b) = Inr_Rep(d) ==> b=d";
-by (rtac (major RS fun_cong RS fun_cong RS fun_cong RS iffE) 1);
-by (fast_tac HOL_cs 1);
-qed "Inr_Rep_inject";
-
-goalw Sum.thy [Inl_def] "inj(Inl)";
-by (rtac injI 1);
-by (etac (inj_onto_Abs_Sum RS inj_ontoD RS Inl_Rep_inject) 1);
-by (rtac Inl_RepI 1);
-by (rtac Inl_RepI 1);
-qed "inj_Inl";
-val Inl_inject = inj_Inl RS injD;
-
-goalw Sum.thy [Inr_def] "inj(Inr)";
-by (rtac injI 1);
-by (etac (inj_onto_Abs_Sum RS inj_ontoD RS Inr_Rep_inject) 1);
-by (rtac Inr_RepI 1);
-by (rtac Inr_RepI 1);
-qed "inj_Inr";
-val Inr_inject = inj_Inr RS injD;
-
-goal Sum.thy "(Inl(x)=Inl(y)) = (x=y)";
-by (fast_tac (HOL_cs addSEs [Inl_inject]) 1);
-qed "Inl_eq";
-
-goal Sum.thy "(Inr(x)=Inr(y)) = (x=y)";
-by (fast_tac (HOL_cs addSEs [Inr_inject]) 1);
-qed "Inr_eq";
-
-(*** Rules for the disjoint sum of two SETS ***)
-
-(** Introduction rules for the injections **)
-
-goalw Sum.thy [sum_def] "!!a A B. a : A ==> Inl(a) : A plus B";
-by (REPEAT (ares_tac [UnI1,imageI] 1));
-qed "InlI";
-
-goalw Sum.thy [sum_def] "!!b A B. b : B ==> Inr(b) : A plus B";
-by (REPEAT (ares_tac [UnI2,imageI] 1));
-qed "InrI";
-
-(** Elimination rules **)
-
-val major::prems = goalw Sum.thy [sum_def]
-    "[| u: A plus B;  \
-\       !!x. [| x:A;  u=Inl(x) |] ==> P; \
-\       !!y. [| y:B;  u=Inr(y) |] ==> P \
-\    |] ==> P";
-by (rtac (major RS UnE) 1);
-by (REPEAT (rtac refl 1
-     ORELSE eresolve_tac (prems@[imageE,ssubst]) 1));
-qed "plusE";
-
-
-val sum_cs = set_cs addSIs [InlI, InrI] 
-                    addSEs [plusE, Inl_neq_Inr, Inr_neq_Inl]
-                    addSDs [Inl_inject, Inr_inject];
-
-
-(** sum_case -- the selection operator for sums **)
-
-goalw Sum.thy [sum_case_def] "sum_case(f, g, Inl(x)) = f(x)";
-by (fast_tac (sum_cs addIs [select_equality]) 1);
-qed "sum_case_Inl";
-
-goalw Sum.thy [sum_case_def] "sum_case(f, g, Inr(x)) = g(x)";
-by (fast_tac (sum_cs addIs [select_equality]) 1);
-qed "sum_case_Inr";
-
-(** Exhaustion rule for sums -- a degenerate form of induction **)
-
-val prems = goalw Sum.thy [Inl_def,Inr_def]
-    "[| !!x::'a. s = Inl(x) ==> P;  !!y::'b. s = Inr(y) ==> P \
-\    |] ==> P";
-by (rtac (rewrite_rule [Sum_def] Rep_Sum RS CollectE) 1);
-by (REPEAT (eresolve_tac [disjE,exE] 1
-     ORELSE EVERY1 [resolve_tac prems, 
-		    etac subst,
-		    rtac (Rep_Sum_inverse RS sym)]));
-qed "sumE";
-
-goal Sum.thy "sum_case(%x::'a. f(Inl(x)), %y::'b. f(Inr(y)), s) = f(s)";
-by (EVERY1 [res_inst_tac [("s","s")] sumE, 
-	    etac ssubst, rtac sum_case_Inl,
-	    etac ssubst, rtac sum_case_Inr]);
-qed "surjective_sum";
-
-goal Sum.thy "R(sum_case(f,g,s)) = \
-\             ((! x. s = Inl(x) --> R(f(x))) & (! y. s = Inr(y) --> R(g(y))))";
-by (rtac sumE 1);
-by (etac ssubst 1);
-by (stac sum_case_Inl 1);
-by (fast_tac (set_cs addSEs [make_elim Inl_inject, Inl_neq_Inr]) 1);
-by (etac ssubst 1);
-by (stac sum_case_Inr 1);
-by (fast_tac (set_cs addSEs [make_elim Inr_inject, Inr_neq_Inl]) 1);
-qed "expand_sum_case";
-
-val sum_ss = prod_ss addsimps [Inl_eq, Inr_eq, Inl_Inr_eq, Inr_Inl_eq, 
-			       sum_case_Inl, sum_case_Inr];
-
-(*Prevents simplification of f and g: much faster*)
-qed_goal "sum_case_weak_cong" Sum.thy
-  "s=t ==> sum_case(f,g,s) = sum_case(f,g,t)"
-  (fn [prem] => [rtac (prem RS arg_cong) 1]);
-
-
-
-
-(** Rules for the Part primitive **)
-
-goalw Sum.thy [Part_def]
-    "!!a b A h. [| a : A;  a=h(b) |] ==> a : Part(A,h)";
-by (fast_tac set_cs 1);
-qed "Part_eqI";
-
-val PartI = refl RSN (2,Part_eqI);
-
-val major::prems = goalw Sum.thy [Part_def]
-    "[| a : Part(A,h);  !!z. [| a : A;  a=h(z) |] ==> P  \
-\    |] ==> P";
-by (rtac (major RS IntE) 1);
-by (etac CollectE 1);
-by (etac exE 1);
-by (REPEAT (ares_tac prems 1));
-qed "PartE";
-
-goalw Sum.thy [Part_def] "Part(A,h) <= A";
-by (rtac Int_lower1 1);
-qed "Part_subset";
-
-goal Sum.thy "!!A B. A<=B ==> Part(A,h) <= Part(B,h)";
-by (fast_tac (set_cs addSIs [PartI] addSEs [PartE]) 1);
-qed "Part_mono";
-
-goalw Sum.thy [Part_def] "!!a. a : Part(A,h) ==> a : A";
-by (etac IntD1 1);
-qed "PartD1";
-
-goal Sum.thy "Part(A,%x.x) = A";
-by (fast_tac (set_cs addIs [PartI,equalityI] addSEs [PartE]) 1);
-qed "Part_id";
-