--- a/Sum.thy Tue Oct 24 14:59:17 1995 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,51 +0,0 @@
-(* Title: HOL/Sum.thy
- ID: $Id$
- Author: Lawrence C Paulson, Cambridge University Computer Laboratory
- Copyright 1992 University of Cambridge
-
-The disjoint sum of two types.
-*)
-
-Sum = Prod +
-
-(* type definition *)
-
-consts
- Inl_Rep :: "['a, 'a, 'b, bool] => bool"
- Inr_Rep :: "['b, 'a, 'b, bool] => bool"
-
-defs
- Inl_Rep_def "Inl_Rep == (%a. %x y p. x=a & p)"
- Inr_Rep_def "Inr_Rep == (%b. %x y p. y=b & ~p)"
-
-subtype (Sum)
- ('a, 'b) "+" (infixr 10)
- = "{f. (? a. f = Inl_Rep(a::'a)) | (? b. f = Inr_Rep(b::'b))}"
-
-
-(* abstract constants and syntax *)
-
-consts
- Inl :: "'a => 'a + 'b"
- Inr :: "'b => 'a + 'b"
- sum_case :: "['a => 'c, 'b => 'c, 'a + 'b] => 'c"
-
- (*disjoint sum for sets; the operator + is overloaded with wrong type!*)
- "plus" :: "['a set, 'b set] => ('a + 'b) set" (infixr 65)
- Part :: "['a set, 'b => 'a] => 'a set"
-
-translations
- "case p of Inl(x) => a | Inr(y) => b" == "sum_case(%x.a, %y.b, p)"
-
-defs
- Inl_def "Inl == (%a. Abs_Sum(Inl_Rep(a)))"
- Inr_def "Inr == (%b. Abs_Sum(Inr_Rep(b)))"
- sum_case_def "sum_case(f, g, p) == @z. (!x. p=Inl(x) --> z=f(x))
- & (!y. p=Inr(y) --> z=g(y))"
-
- sum_def "A plus B == (Inl``A) Un (Inr``B)"
-
- (*for selecting out the components of a mutually recursive definition*)
- Part_def "Part(A, h) == A Int {x. ? z. x = h(z)}"
-
-end