Sum.thy
changeset 252 a4dc62a46ee4
parent 251 f04b33ce250f
child 253 132634d24019
--- a/Sum.thy	Tue Oct 24 14:59:17 1995 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,51 +0,0 @@
-(*  Title:      HOL/Sum.thy
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1992  University of Cambridge
-
-The disjoint sum of two types.
-*)
-
-Sum = Prod +
-
-(* type definition *)
-
-consts
-  Inl_Rep       :: "['a, 'a, 'b, bool] => bool"
-  Inr_Rep       :: "['b, 'a, 'b, bool] => bool"
-
-defs
-  Inl_Rep_def   "Inl_Rep == (%a. %x y p. x=a & p)"
-  Inr_Rep_def   "Inr_Rep == (%b. %x y p. y=b & ~p)"
-
-subtype (Sum)
-  ('a, 'b) "+"          (infixr 10)
-    = "{f. (? a. f = Inl_Rep(a::'a)) | (? b. f = Inr_Rep(b::'b))}"
-
-
-(* abstract constants and syntax *)
-
-consts
-  Inl           :: "'a => 'a + 'b"
-  Inr           :: "'b => 'a + 'b"
-  sum_case      :: "['a => 'c, 'b => 'c, 'a + 'b] => 'c"
-
-  (*disjoint sum for sets; the operator + is overloaded with wrong type!*)
-  "plus"        :: "['a set, 'b set] => ('a + 'b) set"        (infixr 65)
-  Part          :: "['a set, 'b => 'a] => 'a set"
-
-translations
-  "case p of Inl(x) => a | Inr(y) => b" == "sum_case(%x.a, %y.b, p)"
-
-defs
-  Inl_def       "Inl == (%a. Abs_Sum(Inl_Rep(a)))"
-  Inr_def       "Inr == (%b. Abs_Sum(Inr_Rep(b)))"
-  sum_case_def  "sum_case(f, g, p) == @z.  (!x. p=Inl(x) --> z=f(x))      
-                                        & (!y. p=Inr(y) --> z=g(y))"
-
-  sum_def       "A plus B == (Inl``A) Un (Inr``B)"
-
-  (*for selecting out the components of a mutually recursive definition*)
-  Part_def      "Part(A, h) == A Int {x. ? z. x = h(z)}"
-
-end