WF.ML
changeset 252 a4dc62a46ee4
parent 251 f04b33ce250f
child 253 132634d24019
--- a/WF.ML	Tue Oct 24 14:59:17 1995 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,197 +0,0 @@
-(*  Title: 	HOL/wf.ML
-    ID:         $Id$
-    Author: 	Tobias Nipkow
-    Copyright   1992  University of Cambridge
-
-For wf.thy.  Well-founded Recursion
-*)
-
-open WF;
-
-val H_cong = read_instantiate [("f","H")] (standard(refl RS cong RS cong));
-val H_cong1 = refl RS H_cong;
-
-(*Restriction to domain A.  If r is well-founded over A then wf(r)*)
-val [prem1,prem2] = goalw WF.thy [wf_def]
- "[| r <= Sigma(A, %u.A);  \
-\    !!x P. [| ! x. (! y. <y,x> : r --> P(y)) --> P(x);  x:A |] ==> P(x) |]  \
-\ ==>  wf(r)";
-by (strip_tac 1);
-by (rtac allE 1);
-by (assume_tac 1);
-by (best_tac (HOL_cs addSEs [prem1 RS subsetD RS SigmaE2] addIs [prem2]) 1);
-qed "wfI";
-
-val major::prems = goalw WF.thy [wf_def]
-    "[| wf(r);          \
-\       !!x.[| ! y. <y,x>: r --> P(y) |] ==> P(x) \
-\    |]  ==>  P(a)";
-by (rtac (major RS spec RS mp RS spec) 1);
-by (fast_tac (HOL_cs addEs prems) 1);
-qed "wf_induct";
-
-(*Perform induction on i, then prove the wf(r) subgoal using prems. *)
-fun wf_ind_tac a prems i = 
-    EVERY [res_inst_tac [("a",a)] wf_induct i,
-	   rename_last_tac a ["1"] (i+1),
-	   ares_tac prems i];
-
-val prems = goal WF.thy "[| wf(r);  <a,x>:r;  <x,a>:r |] ==> P";
-by (subgoal_tac "! x. <a,x>:r --> <x,a>:r --> P" 1);
-by (fast_tac (HOL_cs addIs prems) 1);
-by (wf_ind_tac "a" prems 1);
-by (fast_tac set_cs 1);
-qed "wf_asym";
-
-val prems = goal WF.thy "[| wf(r);  <a,a>: r |] ==> P";
-by (rtac wf_asym 1);
-by (REPEAT (resolve_tac prems 1));
-qed "wf_anti_refl";
-
-(*transitive closure of a WF relation is WF!*)
-val [prem] = goal WF.thy "wf(r) ==> wf(r^+)";
-by (rewtac wf_def);
-by (strip_tac 1);
-(*must retain the universal formula for later use!*)
-by (rtac allE 1 THEN assume_tac 1);
-by (etac mp 1);
-by (res_inst_tac [("a","x")] (prem RS wf_induct) 1);
-by (rtac (impI RS allI) 1);
-by (etac tranclE 1);
-by (fast_tac HOL_cs 1);
-by (fast_tac HOL_cs 1);
-qed "wf_trancl";
-
-
-(** cut **)
-
-(*This rewrite rule works upon formulae; thus it requires explicit use of
-  H_cong to expose the equality*)
-goalw WF.thy [cut_def]
-    "(cut(f,r,x) = cut(g,r,x)) = (!y. <y,x>:r --> f(y)=g(y))";
-by(simp_tac (HOL_ss addsimps [expand_fun_eq]
-                    setloop (split_tac [expand_if])) 1);
-qed "cut_cut_eq";
-
-goalw WF.thy [cut_def] "!!x. <x,a>:r ==> cut(f,r,a)(x) = f(x)";
-by(asm_simp_tac HOL_ss 1);
-qed "cut_apply";
-
-
-(*** is_recfun ***)
-
-goalw WF.thy [is_recfun_def,cut_def]
-    "!!f. [| is_recfun(r,a,H,f);  ~<b,a>:r |] ==> f(b) = (@z.True)";
-by (etac ssubst 1);
-by(asm_simp_tac HOL_ss 1);
-qed "is_recfun_undef";
-
-(*eresolve_tac transD solves <a,b>:r using transitivity AT MOST ONCE
-  mp amd allE  instantiate induction hypotheses*)
-fun indhyp_tac hyps =
-    ares_tac (TrueI::hyps) ORELSE' 
-    (cut_facts_tac hyps THEN'
-       DEPTH_SOLVE_1 o (ares_tac [TrueI] ORELSE'
-		        eresolve_tac [transD, mp, allE]));
-
-(*** NOTE! some simplifications need a different finish_tac!! ***)
-fun indhyp_tac hyps =
-    resolve_tac (TrueI::refl::hyps) ORELSE' 
-    (cut_facts_tac hyps THEN'
-       DEPTH_SOLVE_1 o (ares_tac [TrueI] ORELSE'
-		        eresolve_tac [transD, mp, allE]));
-val wf_super_ss = HOL_ss setsolver indhyp_tac;
-
-val prems = goalw WF.thy [is_recfun_def,cut_def]
-    "[| wf(r);  trans(r);  is_recfun(r,a,H,f);  is_recfun(r,b,H,g) |] ==> \
-    \ <x,a>:r --> <x,b>:r --> f(x)=g(x)";
-by (cut_facts_tac prems 1);
-by (etac wf_induct 1);
-by (REPEAT (rtac impI 1 ORELSE etac ssubst 1));
-by (asm_simp_tac (wf_super_ss addcongs [if_cong]) 1);
-qed "is_recfun_equal_lemma";
-bind_thm ("is_recfun_equal", (is_recfun_equal_lemma RS mp RS mp));
-
-
-val prems as [wfr,transr,recfa,recgb,_] = goalw WF.thy [cut_def]
-    "[| wf(r);  trans(r); \
-\       is_recfun(r,a,H,f);  is_recfun(r,b,H,g);  <b,a>:r |] ==> \
-\    cut(f,r,b) = g";
-val gundef = recgb RS is_recfun_undef
-and fisg   = recgb RS (recfa RS (transr RS (wfr RS is_recfun_equal)));
-by (cut_facts_tac prems 1);
-by (rtac ext 1);
-by (asm_simp_tac (wf_super_ss addsimps [gundef,fisg]
-                              setloop (split_tac [expand_if])) 1);
-qed "is_recfun_cut";
-
-(*** Main Existence Lemma -- Basic Properties of the_recfun ***)
-
-val prems = goalw WF.thy [the_recfun_def]
-    "is_recfun(r,a,H,f) ==> is_recfun(r, a, H, the_recfun(r,a,H))";
-by (res_inst_tac [("P", "is_recfun(r,a,H)")] selectI 1);
-by (resolve_tac prems 1);
-qed "is_the_recfun";
-
-val prems = goal WF.thy
-    "[| wf(r);  trans(r) |] ==> is_recfun(r, a, H, the_recfun(r,a,H))";
-by (cut_facts_tac prems 1);
-by (wf_ind_tac "a" prems 1);
-by (res_inst_tac [("f", "cut(%y. wftrec(r,y,H), r, a1)")] is_the_recfun 1);
-by (rewrite_goals_tac [is_recfun_def, wftrec_def]);
-by (rtac (cut_cut_eq RS ssubst) 1);
-(*Applying the substitution: must keep the quantified assumption!!*)
-by (EVERY1 [strip_tac, rtac H_cong1, rtac allE, atac,
-            etac (mp RS ssubst), atac]);
-by (fold_tac [is_recfun_def]);
-by (asm_simp_tac (wf_super_ss addsimps[cut_apply,is_recfun_cut,cut_cut_eq]) 1);
-qed "unfold_the_recfun";
-
-
-(*Beware incompleteness of unification!*)
-val prems = goal WF.thy
-    "[| wf(r);  trans(r);  <c,a>:r;  <c,b>:r |] \
-\    ==> the_recfun(r,a,H,c) = the_recfun(r,b,H,c)";
-by (DEPTH_SOLVE (ares_tac (prems@[is_recfun_equal,unfold_the_recfun]) 1));
-qed "the_recfun_equal";
-
-val prems = goal WF.thy
-    "[| wf(r); trans(r); <b,a>:r |] \
-\    ==> cut(the_recfun(r,a,H),r,b) = the_recfun(r,b,H)";
-by (REPEAT (ares_tac (prems@[is_recfun_cut,unfold_the_recfun]) 1));
-qed "the_recfun_cut";
-
-(*** Unfolding wftrec ***)
-
-goalw WF.thy [wftrec_def]
-    "!!r. [| wf(r);  trans(r) |] ==> \
-\    wftrec(r,a,H) = H(a, cut(%x.wftrec(r,x,H), r, a))";
-by (EVERY1 [stac (rewrite_rule [is_recfun_def] unfold_the_recfun),
-	    REPEAT o atac, rtac H_cong1]);
-by (asm_simp_tac (HOL_ss addsimps [cut_cut_eq,the_recfun_cut]) 1);
-qed "wftrec";
-
-(*Unused but perhaps interesting*)
-val prems = goal WF.thy
-    "[| wf(r);  trans(r);  !!f x. H(x, cut(f,r,x)) = H(x,f) |] ==> \
-\		wftrec(r,a,H) = H(a, %x.wftrec(r,x,H))";
-by (rtac (wftrec RS trans) 1);
-by (REPEAT (resolve_tac prems 1));
-qed "wftrec2";
-
-(** Removal of the premise trans(r) **)
-
-goalw WF.thy [wfrec_def]
-    "!!r. wf(r) ==> wfrec(r,a,H) = H(a, cut(%x.wfrec(r,x,H), r, a))";
-by (etac (wf_trancl RS wftrec RS ssubst) 1);
-by (rtac trans_trancl 1);
-by (rtac (refl RS H_cong) 1);    (*expose the equality of cuts*)
-by (simp_tac (HOL_ss addsimps [cut_cut_eq, cut_apply, r_into_trancl]) 1);
-qed "wfrec";
-
-(*This form avoids giant explosions in proofs.  NOTE USE OF == *)
-val rew::prems = goal WF.thy
-    "[| !!x. f(x)==wfrec(r,x,H);  wf(r) |] ==> f(a) = H(a, cut(%x.f(x),r,a))";
-by (rewtac rew);
-by (REPEAT (resolve_tac (prems@[wfrec]) 1));
-qed "def_wfrec";