add_ind_def.ML
changeset 252 a4dc62a46ee4
parent 251 f04b33ce250f
child 253 132634d24019
--- a/add_ind_def.ML	Tue Oct 24 14:59:17 1995 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,244 +0,0 @@
-(*  Title: 	HOL/add_ind_def.ML
-    ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1994  University of Cambridge
-
-Fixedpoint definition module -- for Inductive/Coinductive Definitions
-
-Features:
-* least or greatest fixedpoints
-* user-specified product and sum constructions
-* mutually recursive definitions
-* definitions involving arbitrary monotone operators
-* automatically proves introduction and elimination rules
-
-The recursive sets must *already* be declared as constants in parent theory!
-
-  Introduction rules have the form
-  [| ti:M(Sj), ..., P(x), ... |] ==> t: Sk |]
-  where M is some monotone operator (usually the identity)
-  P(x) is any (non-conjunctive) side condition on the free variables
-  ti, t are any terms
-  Sj, Sk are two of the sets being defined in mutual recursion
-
-Sums are used only for mutual recursion;
-Products are used only to derive "streamlined" induction rules for relations
-
-Nestings of disjoint sum types:
-   (a+(b+c)) for 3,  ((a+b)+(c+d)) for 4,  ((a+b)+(c+(d+e))) for 5,
-   ((a+(b+c))+(d+(e+f))) for 6
-*)
-
-signature FP =		(** Description of a fixed point operator **)
-  sig
-  val oper	: string * typ * term -> term	(*fixed point operator*)
-  val Tarski	: thm			(*Tarski's fixed point theorem*)
-  val induct	: thm			(*induction/coinduction rule*)
-  end;
-
-
-signature ADD_INDUCTIVE_DEF =
-  sig 
-  val add_fp_def_i : term list * term list -> theory -> theory
-  end;
-
-
-
-(*Declares functions to add fixedpoint/constructor defs to a theory*)
-functor Add_inductive_def_Fun (Fp: FP) : ADD_INDUCTIVE_DEF =
-struct
-open Logic Ind_Syntax;
-
-(*internal version*)
-fun add_fp_def_i (rec_tms, intr_tms) thy = 
-  let
-    val sign = sign_of thy;
-
-    (*recT and rec_params should agree for all mutually recursive components*)
-    val rec_hds = map head_of rec_tms;
-
-    val _ = assert_all is_Const rec_hds
-	    (fn t => "Recursive set not previously declared as constant: " ^ 
-	             Sign.string_of_term sign t);
-
-    (*Now we know they are all Consts, so get their names, type and params*)
-    val rec_names = map (#1 o dest_Const) rec_hds
-    and (Const(_,recT),rec_params) = strip_comb (hd rec_tms);
-
-    val _ = assert_all Syntax.is_identifier rec_names
-       (fn a => "Name of recursive set not an identifier: " ^ a);
-
-    local (*Checking the introduction rules*)
-      val intr_sets = map (#2 o rule_concl_msg sign) intr_tms;
-      fun intr_ok set =
-	  case head_of set of Const(a,_) => a mem rec_names | _ => false;
-    in
-      val _ =  assert_all intr_ok intr_sets
-	 (fn t => "Conclusion of rule does not name a recursive set: " ^ 
-		  Sign.string_of_term sign t);
-    end;
-
-    val _ = assert_all is_Free rec_params
-	(fn t => "Param in recursion term not a free variable: " ^
-		 Sign.string_of_term sign t);
-
-    (*** Construct the lfp definition ***)
-    val mk_variant = variant (foldr add_term_names (intr_tms,[]));
-
-    val z = mk_variant"z" and X = mk_variant"X" and w = mk_variant"w";
-
-    (*Probably INCORRECT for mutual recursion!*)
-    val domTs = summands(dest_setT (body_type recT));
-    val dom_sumT = fold_bal mk_sum domTs;
-    val dom_set   = mk_setT dom_sumT;
-
-    val freez   = Free(z, dom_sumT)
-    and freeX   = Free(X, dom_set);
-    (*type of w may be any of the domTs*)
-
-    fun dest_tprop (Const("Trueprop",_) $ P) = P
-      | dest_tprop Q = error ("Ill-formed premise of introduction rule: " ^ 
-			      Sign.string_of_term sign Q);
-
-    (*Makes a disjunct from an introduction rule*)
-    fun lfp_part intr = (*quantify over rule's free vars except parameters*)
-      let val prems = map dest_tprop (strip_imp_prems intr)
-	  val _ = seq (fn rec_hd => seq (chk_prem rec_hd) prems) rec_hds
-	  val exfrees = term_frees intr \\ rec_params
-	  val zeq = eq_const dom_sumT $ freez $ (#1 (rule_concl intr))
-      in foldr mk_exists (exfrees, fold_bal (app conj) (zeq::prems)) end;
-
-    (*The Part(A,h) terms -- compose injections to make h*)
-    fun mk_Part (Bound 0, _) = freeX	(*no mutual rec, no Part needed*)
-      | mk_Part (h, domT)    = 
-	  let val goodh = mend_sum_types (h, dom_sumT)
-              and Part_const = 
-		  Const("Part", [dom_set, domT-->dom_sumT]---> dom_set)
-          in  Part_const $ freeX $ Abs(w,domT,goodh)  end;
-
-    (*Access to balanced disjoint sums via injections*)
-    val parts = map mk_Part
-	        (accesses_bal (ap Inl, ap Inr, Bound 0) (length domTs) ~~
-		 domTs);
-
-    (*replace each set by the corresponding Part(A,h)*)
-    val part_intrs = map (subst_free (rec_tms ~~ parts) o lfp_part) intr_tms;
-
-    val lfp_rhs = Fp.oper(X, dom_sumT, 
-			  mk_Collect(z, dom_sumT, 
-				     fold_bal (app disj) part_intrs))
-
-    val _ = seq (fn rec_hd => deny (rec_hd occs lfp_rhs) 
-			       "Illegal occurrence of recursion operator")
-	     rec_hds;
-
-    (*** Make the new theory ***)
-
-    (*A key definition:
-      If no mutual recursion then it equals the one recursive set.
-      If mutual recursion then it differs from all the recursive sets. *)
-    val big_rec_name = space_implode "_" rec_names;
-
-    (*Big_rec... is the union of the mutually recursive sets*)
-    val big_rec_tm = list_comb(Const(big_rec_name,recT), rec_params);
-
-    (*The individual sets must already be declared*)
-    val axpairs = map mk_defpair 
-	  ((big_rec_tm, lfp_rhs) ::
-	   (case parts of 
-	       [_] => [] 			(*no mutual recursion*)
-	     | _ => rec_tms ~~		(*define the sets as Parts*)
-		    map (subst_atomic [(freeX, big_rec_tm)]) parts));
-
-    val _ = seq (writeln o Sign.string_of_term sign o #2) axpairs
-  
-  in  thy |> add_defs_i axpairs  end
-
-
-(****************************************************************OMITTED
-
-(*Expects the recursive sets to have been defined already.
-  con_ty_lists specifies the constructors in the form (name,prems,mixfix) *)
-fun add_constructs_def (rec_names, con_ty_lists) thy = 
-* let
-*   val _ = writeln"  Defining the constructor functions...";
-*   val case_name = "f";		(*name for case variables*)
-
-*   (** Define the constructors **)
-
-*   (*The empty tuple is 0*)
-*   fun mk_tuple [] = Const("0",iT)
-*     | mk_tuple args = foldr1 mk_Pair args;
-
-*   fun mk_inject n k u = access_bal(ap Inl, ap Inr, u) n k;
-
-*   val npart = length rec_names;	(*total # of mutually recursive parts*)
-
-*   (*Make constructor definition; kpart is # of this mutually recursive part*)
-*   fun mk_con_defs (kpart, con_ty_list) = 
-*     let val ncon = length con_ty_list	   (*number of constructors*)
-	  fun mk_def (((id,T,syn), name, args, prems), kcon) =
-		(*kcon is index of constructor*)
-	      mk_defpair (list_comb (Const(name,T), args),
-			  mk_inject npart kpart
-			  (mk_inject ncon kcon (mk_tuple args)))
-*     in  map mk_def (con_ty_list ~~ (1 upto ncon))  end;
-
-*   (** Define the case operator **)
-
-*   (*Combine split terms using case; yields the case operator for one part*)
-*   fun call_case case_list = 
-*     let fun call_f (free,args) = 
-	      ap_split T free (map (#2 o dest_Free) args)
-*     in  fold_bal (app sum_case) (map call_f case_list)  end;
-
-*   (** Generating function variables for the case definition
-	Non-identifiers (e.g. infixes) get a name of the form f_op_nnn. **)
-
-*   (*Treatment of a single constructor*)
-*   fun add_case (((id,T,syn), name, args, prems), (opno,cases)) =
-	if Syntax.is_identifier id
-	then (opno,   
-	      (Free(case_name ^ "_" ^ id, T), args) :: cases)
-	else (opno+1, 
-	      (Free(case_name ^ "_op_" ^ string_of_int opno, T), args) :: 
-	      cases)
-
-*   (*Treatment of a list of constructors, for one part*)
-*   fun add_case_list (con_ty_list, (opno,case_lists)) =
-	let val (opno',case_list) = foldr add_case (con_ty_list, (opno,[]))
-	in (opno', case_list :: case_lists) end;
-
-*   (*Treatment of all parts*)
-*   val (_, case_lists) = foldr add_case_list (con_ty_lists, (1,[]));
-
-*   val big_case_typ = flat (map (map (#2 o #1)) con_ty_lists) ---> (iT-->iT);
-
-*   val big_rec_name = space_implode "_" rec_names;
-
-*   val big_case_name = big_rec_name ^ "_case";
-
-*   (*The list of all the function variables*)
-*   val big_case_args = flat (map (map #1) case_lists);
-
-*   val big_case_tm = 
-	list_comb (Const(big_case_name, big_case_typ), big_case_args); 
-
-*   val big_case_def = mk_defpair  
-	(big_case_tm, fold_bal (app sum_case) (map call_case case_lists)); 
-
-*   (** Build the new theory **)
-
-*   val const_decs =
-	(big_case_name, big_case_typ, NoSyn) :: map #1 (flat con_ty_lists);
-
-*   val axpairs =
-	big_case_def :: flat (map mk_con_defs ((1 upto npart) ~~ con_ty_lists))
-
-*   in  thy |> add_consts_i const_decs |> add_defs_i axpairs  end;
-****************************************************************)
-end;
-
-
-
-