datatype.ML
changeset 252 a4dc62a46ee4
parent 251 f04b33ce250f
child 253 132634d24019
--- a/datatype.ML	Tue Oct 24 14:59:17 1995 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,486 +0,0 @@
-(* Title:       HOL/datatype.ML
-   ID:          $Id$
-   Author:      Max Breitling, Carsten Clasohm, Tobias Nipkow, Norbert Voelker
-   Copyright 1995 TU Muenchen
-*)
-
-
-(*used for constructor parameters*)
-datatype dt_type = dtVar of string |
-  dtTyp of dt_type list * string |
-  dtRek of dt_type list * string;
-
-structure Datatype =
-struct
-local 
-
-val mysort = sort;
-open ThyParse HOLogic;
-exception Impossible;
-exception RecError of string;
-
-val is_dtRek = (fn dtRek _ => true  |  _  => false);
-fun opt_parens s = if s = "" then "" else enclose "(" ")" s; 
-
-(* ----------------------------------------------------------------------- *)
-(* Derivation of the primrec combinator application from the equations     *)
-
-(* substitute fname(ls,xk,rs) by yk(ls,rs) in t for (xk,yk) in pairs  *) 
-
-fun subst_apps (_,_) [] t = t
-  | subst_apps (fname,rpos) pairs t =
-    let 
-    fun subst (Abs(a,T,t)) = Abs(a,T,subst t)
-      | subst (funct $ body) = 
-	let val (f,b) = strip_comb (funct$body)
-	in 
-	  if is_Const f andalso fst(dest_Const f) = fname 
-	    then 
-	      let val (ls,rest) = (take(rpos,b), drop(rpos,b));
-		val (xk,rs) = (hd rest,tl rest)
-		  handle LIST _ => raise RecError "not enough arguments \
-		   \ in recursive application on rhs"
-              in 
-		(case assoc (pairs,xk) of 
-		   None => raise RecError 
-		     ("illegal occurence of " ^ fname ^ " on rhs")
-		 | Some(U) => list_comb(U,map subst (ls @ rs)))
-	      end
-	  else list_comb(f, map subst b)
-	end
-      | subst(t) = t
-    in subst t end;
-  
-(* abstract rhs *)
-
-fun abst_rec (fname,rpos,tc,ls,cargs,rs,rhs) =       
-  let val rargs = (map fst o 
-		   (filter (fn (a,T) => is_dtRek T))) (cargs ~~ tc);
-      val subs = map (fn (s,T) => (s,dummyT))
-	           (rev(rename_wrt_term rhs rargs));
-      val subst_rhs = subst_apps (fname,rpos)
-	                (map Free rargs ~~ map Free subs) rhs;
-  in 
-      list_abs_free (cargs @ subs @ ls @ rs, subst_rhs) 
-  end;
-
-(* parsing the prim rec equations *)
-
-fun dest_eq ( Const("Trueprop",_) $ (Const ("op =",_) $ lhs $ rhs))
-                 = (lhs, rhs)
-   | dest_eq _ = raise RecError "not a proper equation"; 
-
-fun dest_rec eq = 
-  let val (lhs,rhs) = dest_eq eq; 
-    val (name,args) = strip_comb lhs; 
-    val (ls',rest)  = take_prefix is_Free args; 
-    val (middle,rs') = take_suffix is_Free rest;
-    val rpos = length ls';
-    val (c,cargs') = strip_comb (hd middle)
-      handle LIST "hd" => raise RecError "constructor missing";
-    val (ls,cargs,rs) = (map dest_Free ls', map dest_Free cargs'
-			 , map dest_Free rs')
-      handle TERM ("dest_Free",_) => 
-	  raise RecError "constructor has illegal argument in pattern";
-  in 
-    if length middle > 1 then 
-      raise RecError "more than one non-variable in pattern"
-    else if not(null(findrep (map fst (ls @ rs @ cargs)))) then 
-      raise RecError "repeated variable name in pattern" 
-	 else (fst(dest_Const name) handle TERM _ => 
-	       raise RecError "function is not declared as constant in theory"
-		 ,rpos,ls,fst( dest_Const c),cargs,rs,rhs)
-  end; 
-
-(* check function specified for all constructors and sort function terms *)
-
-fun check_and_sort (n,its) = 
-  if length its = n 
-    then map snd (mysort (fn ((i : int,_),(j,_)) => i<j) its)
-  else raise error "Primrec definition error:\n\
-   \Please give an equation for every constructor";
-
-(* translate rec equations into function arguments suitable for rec comb *)
-(* theory parameter needed for printing error messages                   *) 
-
-fun trans_recs _ _ [] = error("No primrec equations.")
-  | trans_recs thy cs' (eq1::eqs) = 
-    let val (name1,rpos1,ls1,_,_,_,_) = dest_rec eq1
-      handle RecError s =>
-	error("Primrec definition error: " ^ s ^ ":\n" 
-	      ^ "   " ^ Sign.string_of_term (sign_of thy) eq1);
-      val tcs = map (fn (_,c,T,_,_) => (c,T)) cs';  
-      val cs = map fst tcs;
-      fun trans_recs' _ [] = []
-        | trans_recs' cis (eq::eqs) = 
-	  let val (name,rpos,ls,c,cargs,rs,rhs) = dest_rec eq; 
-	    val tc = assoc(tcs,c);
-	    val i = (1 + find (c,cs))  handle LIST "find" => 0; 
-	  in
-	  if name <> name1 then 
-	    raise RecError "function names inconsistent"
-	  else if rpos <> rpos1 then 
-	    raise RecError "position of rec. argument inconsistent"
-	  else if i = 0 then 
-	    raise RecError "illegal argument in pattern" 
-	  else if i mem cis then
-	    raise RecError "constructor already occured as pattern "
-	       else (i,abst_rec (name,rpos,the tc,ls,cargs,rs,rhs))
-		     :: trans_recs' (i::cis) eqs 
-	  end
-	  handle RecError s =>
-	        error("Primrec definition error\n" ^ s ^ "\n" 
-		      ^ "   " ^ Sign.string_of_term (sign_of thy) eq);
-    in (  name1, ls1
-	, check_and_sort (length cs, trans_recs' [] (eq1::eqs)))
-    end ;
-
-in
-  fun add_datatype (typevars, tname, cons_list') thy = 
-    let
-      fun typid(dtRek(_,id)) = id
-        | typid(dtVar s) = implode (tl (explode s))
-        | typid(dtTyp(_,id)) = id;
-
-      fun index_vnames(vn::vns,tab) =
-            (case assoc(tab,vn) of
-               None => if vn mem vns
-                       then (vn^"1") :: index_vnames(vns,(vn,2)::tab)
-                       else vn :: index_vnames(vns,tab)
-             | Some(i) => (vn^(string_of_int i)) ::
-                          index_vnames(vns,(vn,i+1)::tab))
-        | index_vnames([],tab) = [];
-
-      fun mk_var_names types = index_vnames(map typid types,[]);
-
-      (*search for free type variables and convert recursive *)
-      fun analyse_types (cons, types, syn) =
-	let fun analyse(t as dtVar v) =
-                  if t mem typevars then t
-                  else error ("Free type variable " ^ v ^ " on rhs.")
-	      | analyse(dtTyp(typl,s)) =
-		  if tname <> s then dtTyp(analyses typl, s)
-                  else if typevars = typl then dtRek(typl, s)
-                       else error (s ^ " used in different ways")
-	      | analyse(dtRek _) = raise Impossible
-	    and analyses ts = map analyse ts;
-	in (cons, Syntax.const_name cons syn, analyses types,
-            mk_var_names types, syn)
-        end;
-
-     (*test if all elements are recursive, i.e. if the type is empty*)
-      
-      fun non_empty (cs : ('a * 'b * dt_type list * 'c *'d) list) = 
-	not(forall (exists is_dtRek o #3) cs) orelse
-	error("Empty datatype not allowed!");
-
-      val cons_list = map analyse_types cons_list';
-      val dummy = non_empty cons_list;
-      val num_of_cons = length cons_list;
-
-     (* Auxiliary functions to construct argument and equation lists *)
-
-     (*generate 'var_n, ..., var_m'*)
-      fun Args(var, delim, n, m) = 
-	space_implode delim (map (fn n => var^string_of_int(n)) (n upto m));
-
-      fun C_exp name vns = name ^ opt_parens(commas vns);
-
-     (*Arg_eqs([x1,...,xn],[y1,...,yn]) = "x1 = y1 & ... & xn = yn" *)
-      fun arg_eqs vns vns' =
-        let fun mkeq(x,x') = x ^ "=" ^ x'
-        in space_implode " & " (map mkeq (vns~~vns')) end
-
-     (*Pretty printers for type lists;
-       pp_typlist1: parentheses, pp_typlist2: brackets*)
-      fun pp_typ (dtVar s) = s
-        | pp_typ (dtTyp (typvars, id)) =
-	  if null typvars then id else (pp_typlist1 typvars) ^ id
-        | pp_typ (dtRek (typvars, id)) = (pp_typlist1 typvars) ^ id
-      and
-	pp_typlist' ts = commas (map pp_typ ts)
-      and
-	pp_typlist1 ts = if null ts then "" else parens (pp_typlist' ts);
-
-      fun pp_typlist2 ts = if null ts then "" else brackets (pp_typlist' ts);
-
-     (* Generate syntax translation for case rules *)
-      fun calc_xrules c_nr y_nr ((_, name, _, vns, _) :: cs) = 
-	let val arity = length vns;
-	  val body  = "z" ^ string_of_int(c_nr);
-	  val args1 = if arity=0 then ""
-		      else parens (Args ("y", ",", y_nr, y_nr+arity-1));
-	  val args2 = if arity=0 then ""
-		      else "% " ^ Args ("y", " ", y_nr, y_nr+arity-1) 
-			^ ". ";
-	  val (rest1,rest2) = 
-	    if null cs then ("","")
-	    else let val (h1, h2) = calc_xrules (c_nr+1) (y_nr+arity) cs
-	    in (" | " ^ h1, ", " ^ h2) end;
-	in (name ^ args1 ^ " => " ^ body ^ rest1, args2 ^ body ^ rest2) end
-        | calc_xrules _ _ [] = raise Impossible;
-      
-      val xrules =
-	let val (first_part, scnd_part) = calc_xrules 1 1 cons_list
-	in  [("logic", "case x of " ^ first_part) <->
-	     ("logic", tname ^ "_case(" ^ scnd_part ^ ", x)" )]
-	end;
-
-     (*type declarations for constructors*)
-      fun const_type (id, _, typlist, _, syn) =
-	(id,  
-	 (if null typlist then "" else pp_typlist2 typlist ^ " => ") ^
-	    pp_typlist1 typevars ^ tname, syn);
-
-
-      fun assumpt (dtRek _ :: ts, v :: vs ,found) =
-	let val h = if found then ";P(" ^ v ^ ")" else "[| P(" ^ v ^ ")"
-	in h ^ (assumpt (ts, vs, true)) end
-        | assumpt (t :: ts, v :: vs, found) = assumpt (ts, vs, found)
-      | assumpt ([], [], found) = if found then "|] ==>" else ""
-        | assumpt _ = raise Impossible;
-
-      fun t_inducting ((_, name, types, vns, _) :: cs) =
-	let
-	  val h = if null types then " P(" ^ name ^ ")"
-		  else " !!" ^ (space_implode " " vns) ^ "." ^
-		    (assumpt (types, vns, false)) ^
-                    "P(" ^ C_exp name vns ^ ")";
-	  val rest = t_inducting cs;
-	in if rest = "" then h else h ^ "; " ^ rest end
-        | t_inducting [] = "";
-
-      fun t_induct cl typ_name =
-        "[|" ^ t_inducting cl ^ "|] ==> P(" ^ typ_name ^ ")";
-
-      fun gen_typlist typevar f ((_, _, ts, _, _) :: cs) =
-	let val h = if (length ts) > 0
-		      then pp_typlist2(f ts) ^ "=>"
-		    else ""
-	in h ^ typevar ^  "," ^ (gen_typlist typevar f cs) end
-        | gen_typlist _ _ [] = "";
-
-
-(* -------------------------------------------------------------------- *)
-(* The case constant and rules 	        				*)
- 		
-      val t_case = tname ^ "_case";
-
-      fun case_rule n (id, name, _, vns, _) =
-	let val args =  opt_parens(commas vns)
-	in (t_case ^ "_" ^ id,
-	    t_case ^ "(" ^ Args("f", ",", 1, num_of_cons)
-	    ^ "," ^ name ^ args ^ ") = f"^string_of_int(n) ^ args)
-	end
-
-      fun case_rules n (c :: cs) = case_rule n c :: case_rules(n+1) cs
-        | case_rules _ [] = [];
-
-      val datatype_arity = length typevars;
-
-      val types = [(tname, datatype_arity, NoSyn)];
-
-      val arities = 
-        let val term_list = replicate datatype_arity termS;
-        in [(tname, term_list, termS)] 
-	end;
-
-      val datatype_name = pp_typlist1 typevars ^ tname;
-
-      val new_tvar_name = variant (map (fn dtVar s => s) typevars) "'z";
-
-      val case_const =
-	(t_case,
-	 "[" ^ gen_typlist new_tvar_name I cons_list 
-	 ^  pp_typlist1 typevars ^ tname ^ "] =>" ^ new_tvar_name,
-	 NoSyn);
-
-      val rules_case = case_rules 1 cons_list;
-
-(* -------------------------------------------------------------------- *)
-(* The prim-rec combinator						*) 
-
-      val t_rec = tname ^ "_rec"
-
-(* adding type variables for dtRek types to end of list of dt_types      *)   
-
-      fun add_reks ts = 
-	ts @ map (fn _ => dtVar new_tvar_name) (filter is_dtRek ts); 
-
-(* positions of the dtRek types in a list of dt_types, starting from 1  *)
-      fun rek_vars ts vns = map snd (filter (is_dtRek o fst) (ts ~~ vns))
-
-      fun rec_rule n (id,name,ts,vns,_) = 
-	let val args = commas vns
-	  val fargs = Args("f",",",1,num_of_cons)
-	  fun rarg vn = "," ^ t_rec ^ parens(fargs ^ "," ^ vn)
-	  val rargs = implode (map rarg (rek_vars ts vns))
-	in
-	  ( t_rec ^ "_" ^ id
-	   , t_rec ^ parens(fargs ^  "," ^ name ^ (opt_parens args)) ^ " = f"
-	   ^ string_of_int(n) ^ opt_parens (args ^ rargs)) 
-	end
-
-      fun rec_rules n (c::cs) = rec_rule n c :: rec_rules (n+1) cs 
-	| rec_rules _ [] = [];
-
-      val rec_const =
-	(t_rec,
-	 "[" ^ (gen_typlist new_tvar_name add_reks cons_list) 
-	 ^ (pp_typlist1 typevars) ^ tname ^ "] =>" ^ new_tvar_name,
-	 NoSyn);
-
-      val rules_rec = rec_rules 1 cons_list
-
-(* -------------------------------------------------------------------- *)
-      val consts = 
-	map const_type cons_list
-	@ (if num_of_cons < dtK then []
-	   else [(tname ^ "_ord", datatype_name ^ "=>nat", NoSyn)])
-	@ [case_const,rec_const];
-
-
-      fun Ci_ing ((id, name, _, vns, _) :: cs) =
-	   if null vns then Ci_ing cs
-	   else let val vns' = variantlist(vns,vns)
-                in ("inject_" ^ id,
-		    "(" ^ (C_exp name vns) ^ "=" ^ (C_exp name vns')
-		    ^ ") = (" ^ (arg_eqs vns vns') ^ ")") :: (Ci_ing cs)
-                end
-	| Ci_ing [] = [];
-
-      fun Ci_negOne (id1,name1,_,vns1,_) (id2,name2,_,vns2,_) =
-            let val vns2' = variantlist(vns2,vns1)
-                val ax = C_exp name1 vns1 ^ "~=" ^ C_exp name2 vns2'
-	in (id1 ^ "_not_" ^ id2, ax) end;
-
-      fun Ci_neg1 [] = []
-	| Ci_neg1 (c1::cs) = (map (Ci_negOne c1) cs) @ Ci_neg1 cs;
-
-      fun suc_expr n = 
-	if n=0 then "0" else "Suc(" ^ suc_expr(n-1) ^ ")";
-
-      fun Ci_neg2() =
-	let val ord_t = tname ^ "_ord";
-	  val cis = cons_list ~~ (0 upto (num_of_cons - 1))
-	  fun Ci_neg2equals ((id, name, _, vns, _), n) =
-	    let val ax = ord_t ^ "(" ^ (C_exp name vns) ^ ") = " ^ (suc_expr n)
-	    in (ord_t ^ "_" ^ id, ax) end
-	in (ord_t ^ "_distinct", ord_t^"(x) ~= "^ord_t^"(y) ==> x ~= y") ::
-	  (map Ci_neg2equals cis)
-	end;
-
-      val rules_distinct = if num_of_cons < dtK then Ci_neg1 cons_list
-			   else Ci_neg2();
-
-      val rules_inject = Ci_ing cons_list;
-
-      val rule_induct = (tname ^ "_induct", t_induct cons_list tname);
-
-      val rules = rule_induct ::
-	(rules_inject @ rules_distinct @ rules_case @ rules_rec);
-
-      fun add_primrec eqns thy =
-	let val rec_comb = Const(t_rec,dummyT)
-	  val teqns = map (fn neq => snd(read_axm (sign_of thy) neq)) eqns
-	  val (fname,ls,fns) = trans_recs thy cons_list teqns
-	  val rhs = 
-	    list_abs_free
-	    (ls @ [(tname,dummyT)]
-	     ,list_comb(rec_comb
-			, fns @ map Bound (0 ::(length ls downto 1))));
-          val sg = sign_of thy;
-          val defpair =  mk_defpair (Const(fname,dummyT),rhs)
-	  val defpairT as (_, _ $ Const(_,T) $ _ ) = inferT_axm sg defpair;
-	  val varT = Type.varifyT T;
-          val ftyp = the (Sign.const_type sg fname);
-	in
-	  if Type.typ_instance (#tsig(Sign.rep_sg sg), ftyp, varT)
-	  then add_defs_i [defpairT] thy
-	  else error("Primrec definition error: \ntype of " ^ fname 
-		     ^ " is not instance of type deduced from equations")
-	end;
-
-    in 
-      (thy
-      |> add_types types
-      |> add_arities arities
-      |> add_consts consts
-      |> add_trrules xrules
-      |> add_axioms rules,add_primrec)
-    end
-end
-end
-
-(*
-Informal description of functions used in datatype.ML for the Isabelle/HOL
-implementation of prim. rec. function definitions. (N. Voelker, Feb. 1995) 
-
-* subst_apps (fname,rpos) pairs t:
-   substitute the term 
-       fname(ls,xk,rs) 
-   by 
-      yk(ls,rs) 
-   in t for (xk,yk) in pairs, where rpos = length ls. 
-   Applied with : 
-     fname = function name 
-     rpos = position of recursive argument 
-     pairs = list of pairs (xk,yk), where 
-          xk are the rec. arguments of the constructor in the pattern,
-          yk is a variable with name derived from xk 
-     t = rhs of equation 
-
-* abst_rec (fname,rpos,tc,ls,cargs,rs,rhs)
-  - filter recursive arguments from constructor arguments cargs,
-  - perform substitutions on rhs, 
-  - derive list subs of new variable names yk for use in subst_apps, 
-  - abstract rhs with respect to cargs, subs, ls and rs. 
-
-* dest_eq t 
-  destruct a term denoting an equation into lhs and rhs. 
-
-* dest_req eq 
-  destruct an equation of the form 
-      name (vl1..vlrpos, Ci(vi1..vin), vr1..vrn) = rhs
-  into 
-  - function name  (name) 
-  - position of the first non-variable parameter  (rpos)
-  - the list of first rpos parameters (ls = [vl1..vlrpos]) 
-  - the constructor (fst( dest_Const c) = Ci)
-  - the arguments of the constructor (cargs = [vi1..vin])
-  - the rest of the variables in the pattern (rs = [vr1..vrn])
-  - the right hand side of the equation (rhs).  
- 
-* check_and_sort (n,its)
-  check that  n = length its holds, and sort elements of its by 
-  first component. 
-
-* trans_recs thy cs' (eq1::eqs)
-  destruct eq1 into name1, rpos1, ls1, etc.. 
-  get constructor list with and without type (tcs resp. cs) from cs',  
-  for every equation:  
-    destruct it into (name,rpos,ls,c,cargs,rs,rhs)
-    get typed constructor tc from c and tcs 
-    determine the index i of the constructor 
-    check function name and position of rec. argument by comparison
-    with first equation 
-    check for repeated variable names in pattern
-    derive function term f_i which is used as argument of the rec. combinator
-    sort the terms f_i according to i and return them together
-      with the function name and the parameter of the definition (ls). 
-
-* Application:
-
-  The rec. combinator is applied to the function terms resulting from
-  trans_rec. This results in a function which takes the recursive arg. 
-  as first parameter and then the arguments corresponding to ls. The
-  order of parameters is corrected by setting the rhs equal to 
-
-  list_abs_free
-	    (ls @ [(tname,dummyT)]
-	     ,list_comb(rec_comb
-			, fns @ map Bound (0 ::(length ls downto 1))));
-
-  Note the de-Bruijn indices counting the number of lambdas between the
-  variable and its binding. 
-*)