ex/Acc.thy
changeset 252 a4dc62a46ee4
parent 251 f04b33ce250f
child 253 132634d24019
--- a/ex/Acc.thy	Tue Oct 24 14:59:17 1995 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,26 +0,0 @@
-(*  Title: 	HOL/ex/Acc.thy
-    ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1994  University of Cambridge
-
-Inductive definition of acc(r)
-
-See Ch. Paulin-Mohring, Inductive Definitions in the System Coq.
-Research Report 92-49, LIP, ENS Lyon.  Dec 1992.
-*)
-
-Acc = WF + 
-
-consts
-  pred :: "['b, ('a * 'b)set] => 'a set"	(*Set of predecessors*)
-  acc  :: "('a * 'a)set => 'a set"		(*Accessible part*)
-
-defs
-  pred_def     "pred(x,r) == {y. <y,x>:r}"
-
-inductive "acc(r)"
-  intrs
-    pred    "pred(a,r): Pow(acc(r)) ==> a: acc(r)"
-  monos     "[Pow_mono]"
-
-end