ex/LList.ML
changeset 252 a4dc62a46ee4
parent 251 f04b33ce250f
child 253 132634d24019
--- a/ex/LList.ML	Tue Oct 24 14:59:17 1995 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,880 +0,0 @@
-(*  Title: 	HOL/llist
-    ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1993  University of Cambridge
-
-SHOULD LListD_Fun_CONS_I, etc., be equations (for rewriting)?
-*)
-
-open LList;
-
-(** Simplification **)
-
-val llist_ss = univ_ss addcongs [split_weak_cong, sum_case_weak_cong]
-                       setloop  split_tac [expand_split, expand_sum_case];
-
-(*For adding _eqI rules to a simpset; we must remove Pair_eq because
-  it may turn an instance of reflexivity into a conjunction!*)
-fun add_eqI ss = ss addsimps [range_eqI, image_eqI] 
-                    delsimps [Pair_eq];
-
-
-(*This justifies using llist in other recursive type definitions*)
-goalw LList.thy llist.defs "!!A B. A<=B ==> llist(A) <= llist(B)";
-by (rtac gfp_mono 1);
-by (REPEAT (ares_tac basic_monos 1));
-qed "llist_mono";
-
-
-goal LList.thy "llist(A) = {Numb(0)} <+> (A <*> llist(A))";
-let val rew = rewrite_rule [NIL_def, CONS_def] in  
-by (fast_tac (univ_cs addSIs (equalityI :: map rew llist.intrs)
-                      addEs [rew llist.elim]) 1)
-end;
-qed "llist_unfold";
-
-
-(*** Type checking by coinduction, using list_Fun 
-     THE COINDUCTIVE DEFINITION PACKAGE COULD DO THIS!
-***)
-
-goalw LList.thy [list_Fun_def]
-    "!!M. [| M : X;  X <= list_Fun(A, X Un llist(A)) |] ==>  M : llist(A)";
-by (etac llist.coinduct 1);
-by (etac (subsetD RS CollectD) 1);
-by (assume_tac 1);
-qed "llist_coinduct";
-
-goalw LList.thy [list_Fun_def, NIL_def] "NIL: list_Fun(A,X)";
-by (fast_tac set_cs 1);
-qed "list_Fun_NIL_I";
-
-goalw LList.thy [list_Fun_def,CONS_def]
-    "!!M N. [| M: A;  N: X |] ==> CONS(M,N) : list_Fun(A,X)";
-by (fast_tac set_cs 1);
-qed "list_Fun_CONS_I";
-
-(*Utilise the "strong" part, i.e. gfp(f)*)
-goalw LList.thy (llist.defs @ [list_Fun_def])
-    "!!M N. M: llist(A) ==> M : list_Fun(A, X Un llist(A))";
-by (etac (llist.mono RS gfp_fun_UnI2) 1);
-qed "list_Fun_llist_I";
-
-(*** LList_corec satisfies the desired recurion equation ***)
-
-(*A continuity result?*)
-goalw LList.thy [CONS_def] "CONS(M, UN x.f(x)) = (UN x. CONS(M, f(x)))";
-by (simp_tac (univ_ss addsimps [In1_UN1, Scons_UN1_y]) 1);
-qed "CONS_UN1";
-
-(*UNUSED; obsolete?
-goal Prod.thy "split(p, %x y.UN z.f(x,y,z)) = (UN z. split(p, %x y.f(x,y,z)))";
-by (simp_tac (prod_ss setloop (split_tac [expand_split])) 1);
-qed "split_UN1";
-
-goal Sum.thy "sum_case(s,f,%y.UN z.g(y,z)) = (UN z.sum_case(s,f,%y. g(y,z)))";
-by (simp_tac (sum_ss setloop (split_tac [expand_sum_case])) 1);
-qed "sum_case2_UN1";
-*)
-
-val prems = goalw LList.thy [CONS_def]
-    "[| M<=M';  N<=N' |] ==> CONS(M,N) <= CONS(M',N')";
-by (REPEAT (resolve_tac ([In1_mono,Scons_mono]@prems) 1));
-qed "CONS_mono";
-
-val corec_fun_simps = [LList_corec_fun_def RS def_nat_rec_0,
-		       LList_corec_fun_def RS def_nat_rec_Suc];
-val corec_fun_ss = llist_ss addsimps corec_fun_simps;
-
-(** The directions of the equality are proved separately **)
-
-goalw LList.thy [LList_corec_def]
-    "LList_corec(a,f) <= sum_case(%u.NIL, \
-\			   split(%z w. CONS(z, LList_corec(w,f))), f(a))";
-by (rtac UN1_least 1);
-by (res_inst_tac [("n","k")] natE 1);
-by (ALLGOALS (asm_simp_tac corec_fun_ss));
-by (REPEAT (resolve_tac [allI, impI, subset_refl RS CONS_mono, UN1_upper] 1));
-qed "LList_corec_subset1";
-
-goalw LList.thy [LList_corec_def]
-    "sum_case(%u.NIL, split(%z w. CONS(z, LList_corec(w,f))), f(a)) <= \
-\    LList_corec(a,f)";
-by (simp_tac (corec_fun_ss addsimps [CONS_UN1]) 1);
-by (safe_tac set_cs);
-by (ALLGOALS (res_inst_tac [("x","Suc(?k)")] UN1_I THEN' 
-	      asm_simp_tac corec_fun_ss));
-qed "LList_corec_subset2";
-
-(*the recursion equation for LList_corec -- NOT SUITABLE FOR REWRITING!*)
-goal LList.thy
-    "LList_corec(a,f) = sum_case(%u. NIL, \
-\			     split(%z w. CONS(z, LList_corec(w,f))), f(a))";
-by (REPEAT (resolve_tac [equalityI, LList_corec_subset1, 
-			 LList_corec_subset2] 1));
-qed "LList_corec";
-
-(*definitional version of same*)
-val [rew] = goal LList.thy
-    "[| !!x. h(x) == LList_corec(x,f) |] ==>	\
-\    h(a) = sum_case(%u.NIL, split(%z w. CONS(z, h(w))), f(a))";
-by (rewtac rew);
-by (rtac LList_corec 1);
-qed "def_LList_corec";
-
-(*A typical use of co-induction to show membership in the gfp. 
-  Bisimulation is  range(%x. LList_corec(x,f)) *)
-goal LList.thy "LList_corec(a,f) : llist({u.True})";
-by (res_inst_tac [("X", "range(%x.LList_corec(x,?g))")] llist_coinduct 1);
-by (rtac rangeI 1);
-by (safe_tac set_cs);
-by (stac LList_corec 1);
-by (simp_tac (llist_ss addsimps [list_Fun_NIL_I, list_Fun_CONS_I, CollectI]
-                       |> add_eqI) 1);
-qed "LList_corec_type";
-
-(*Lemma for the proof of llist_corec*)
-goal LList.thy
-   "LList_corec(a, %z.sum_case(Inl, split(%v w.Inr(<Leaf(v),w>)), f(z))) : \
-\   llist(range(Leaf))";
-by (res_inst_tac [("X", "range(%x.LList_corec(x,?g))")] llist_coinduct 1);
-by (rtac rangeI 1);
-by (safe_tac set_cs);
-by (stac LList_corec 1);
-by (asm_simp_tac (llist_ss addsimps [list_Fun_NIL_I]) 1);
-by (fast_tac (set_cs addSIs [list_Fun_CONS_I]) 1);
-qed "LList_corec_type2";
-
-
-(**** llist equality as a gfp; the bisimulation principle ****)
-
-(*This theorem is actually used, unlike the many similar ones in ZF*)
-goal LList.thy "LListD(r) = diag({Numb(0)}) <++> (r <**> LListD(r))";
-let val rew = rewrite_rule [NIL_def, CONS_def] in  
-by (fast_tac (univ_cs addSIs (equalityI :: map rew LListD.intrs)
-                      addEs [rew LListD.elim]) 1)
-end;
-qed "LListD_unfold";
-
-goal LList.thy "!M N. <M,N> : LListD(diag(A)) --> ntrunc(k,M) = ntrunc(k,N)";
-by (res_inst_tac [("n", "k")] less_induct 1);
-by (safe_tac set_cs);
-by (etac LListD.elim 1);
-by (safe_tac (prod_cs addSEs [diagE]));
-by (res_inst_tac [("n", "n")] natE 1);
-by (asm_simp_tac (univ_ss addsimps [ntrunc_0]) 1);
-by (rename_tac "n'" 1);
-by (res_inst_tac [("n", "n'")] natE 1);
-by (asm_simp_tac (univ_ss addsimps [CONS_def, ntrunc_one_In1]) 1);
-by (asm_simp_tac (univ_ss addsimps [CONS_def, ntrunc_In1, ntrunc_Scons]) 1);
-qed "LListD_implies_ntrunc_equality";
-
-(*The domain of the LListD relation*)
-goalw LList.thy (llist.defs @ [NIL_def, CONS_def])
-    "fst``LListD(diag(A)) <= llist(A)";
-by (rtac gfp_upperbound 1);
-(*avoids unfolding LListD on the rhs*)
-by (res_inst_tac [("P", "%x. fst``x <= ?B")] (LListD_unfold RS ssubst) 1);
-by (simp_tac fst_image_ss 1);
-by (fast_tac univ_cs 1);
-qed "fst_image_LListD";
-
-(*This inclusion justifies the use of coinduction to show M=N*)
-goal LList.thy "LListD(diag(A)) <= diag(llist(A))";
-by (rtac subsetI 1);
-by (res_inst_tac [("p","x")] PairE 1);
-by (safe_tac HOL_cs);
-by (rtac diag_eqI 1);
-by (rtac (LListD_implies_ntrunc_equality RS spec RS spec RS mp RS 
-	  ntrunc_equality) 1);
-by (assume_tac 1);
-by (etac (fst_imageI RS (fst_image_LListD RS subsetD)) 1);
-qed "LListD_subset_diag";
-
-(** Coinduction, using LListD_Fun
-    THE COINDUCTIVE DEFINITION PACKAGE COULD DO THIS!
- **)
-
-goalw LList.thy [LListD_Fun_def]
-    "!!M. [| M : X;  X <= LListD_Fun(r, X Un LListD(r)) |] ==>  M : LListD(r)";
-by (etac LListD.coinduct 1);
-by (etac (subsetD RS CollectD) 1);
-by (assume_tac 1);
-qed "LListD_coinduct";
-
-goalw LList.thy [LListD_Fun_def,NIL_def] "<NIL,NIL> : LListD_Fun(r,s)";
-by (fast_tac set_cs 1);
-qed "LListD_Fun_NIL_I";
-
-goalw LList.thy [LListD_Fun_def,CONS_def]
- "!!x. [| x:A;  <M,N>:s |] ==> <CONS(x,M), CONS(x,N)> : LListD_Fun(diag(A),s)";
-by (fast_tac univ_cs 1);
-qed "LListD_Fun_CONS_I";
-
-(*Utilise the "strong" part, i.e. gfp(f)*)
-goalw LList.thy (LListD.defs @ [LListD_Fun_def])
-    "!!M N. M: LListD(r) ==> M : LListD_Fun(r, X Un LListD(r))";
-by (etac (LListD.mono RS gfp_fun_UnI2) 1);
-qed "LListD_Fun_LListD_I";
-
-
-(*This converse inclusion helps to strengthen LList_equalityI*)
-goal LList.thy "diag(llist(A)) <= LListD(diag(A))";
-by (rtac subsetI 1);
-by (etac LListD_coinduct 1);
-by (rtac subsetI 1);
-by (etac diagE 1);
-by (etac ssubst 1);
-by (eresolve_tac [llist.elim] 1);
-by (ALLGOALS
-    (asm_simp_tac (llist_ss addsimps [diagI, LListD_Fun_NIL_I,
-				      LListD_Fun_CONS_I])));
-qed "diag_subset_LListD";
-
-goal LList.thy "LListD(diag(A)) = diag(llist(A))";
-by (REPEAT (resolve_tac [equalityI, LListD_subset_diag, 
-			 diag_subset_LListD] 1));
-qed "LListD_eq_diag";
-
-goal LList.thy 
-    "!!M N. M: llist(A) ==> <M,M> : LListD_Fun(diag(A), X Un diag(llist(A)))";
-by (rtac (LListD_eq_diag RS subst) 1);
-by (rtac LListD_Fun_LListD_I 1);
-by (asm_simp_tac (HOL_ss addsimps [LListD_eq_diag, diagI]) 1);
-qed "LListD_Fun_diag_I";
-
-
-(** To show two LLists are equal, exhibit a bisimulation! 
-      [also admits true equality]
-   Replace "A" by some particular set, like {x.True}??? *)
-goal LList.thy 
-    "!!r. [| <M,N> : r;  r <= LListD_Fun(diag(A), r Un diag(llist(A))) \
-\         |] ==>  M=N";
-by (rtac (LListD_subset_diag RS subsetD RS diagE) 1);
-by (etac LListD_coinduct 1);
-by (asm_simp_tac (HOL_ss addsimps [LListD_eq_diag]) 1);
-by (safe_tac prod_cs);
-qed "LList_equalityI";
-
-
-(*** Finality of llist(A): Uniqueness of functions defined by corecursion ***)
-
-(*abstract proof using a bisimulation*)
-val [prem1,prem2] = goal LList.thy
- "[| !!x. h1(x) = sum_case(%u.NIL, split(%z w. CONS(z,h1(w))), f(x));  \
-\    !!x. h2(x) = sum_case(%u.NIL, split(%z w. CONS(z,h2(w))), f(x)) |]\
-\ ==> h1=h2";
-by (rtac ext 1);
-(*next step avoids an unknown (and flexflex pair) in simplification*)
-by (res_inst_tac [("A", "{u.True}"),
-		  ("r", "range(%u. <h1(u),h2(u)>)")] LList_equalityI 1);
-by (rtac rangeI 1);
-by (safe_tac set_cs);
-by (stac prem1 1);
-by (stac prem2 1);
-by (simp_tac (llist_ss addsimps [LListD_Fun_NIL_I,
-				 CollectI RS LListD_Fun_CONS_I]
-	               |> add_eqI) 1);
-qed "LList_corec_unique";
-
-val [prem] = goal LList.thy
- "[| !!x. h(x) = sum_case(%u.NIL, split(%z w. CONS(z,h(w))), f(x)) |] \
-\ ==> h = (%x.LList_corec(x,f))";
-by (rtac (LList_corec RS (prem RS LList_corec_unique)) 1);
-qed "equals_LList_corec";
-
-
-(** Obsolete LList_corec_unique proof: complete induction, not coinduction **)
-
-goalw LList.thy [CONS_def] "ntrunc(Suc(0), CONS(M,N)) = {}";
-by (rtac ntrunc_one_In1 1);
-qed "ntrunc_one_CONS";
-
-goalw LList.thy [CONS_def]
-    "ntrunc(Suc(Suc(k)), CONS(M,N)) = CONS (ntrunc(k,M), ntrunc(k,N))";
-by (simp_tac (HOL_ss addsimps [ntrunc_Scons,ntrunc_In1]) 1);
-qed "ntrunc_CONS";
-
-val [prem1,prem2] = goal LList.thy
- "[| !!x. h1(x) = sum_case(%u.NIL, split(%z w. CONS(z,h1(w))), f(x));  \
-\    !!x. h2(x) = sum_case(%u.NIL, split(%z w. CONS(z,h2(w))), f(x)) |]\
-\ ==> h1=h2";
-by (rtac (ntrunc_equality RS ext) 1);
-by (res_inst_tac [("x", "x")] spec 1);
-by (res_inst_tac [("n", "k")] less_induct 1);
-by (rtac allI 1);
-by (stac prem1 1);
-by (stac prem2 1);
-by (simp_tac (sum_ss setloop (split_tac [expand_split,expand_sum_case])) 1);
-by (strip_tac 1);
-by (res_inst_tac [("n", "n")] natE 1);
-by (res_inst_tac [("n", "xc")] natE 2);
-by (ALLGOALS(asm_simp_tac(nat_ss addsimps
-            [ntrunc_0,ntrunc_one_CONS,ntrunc_CONS])));
-result();
-
-
-(*** Lconst -- defined directly using lfp, but equivalent to a LList_corec ***)
-
-goal LList.thy "mono(CONS(M))";
-by (REPEAT (ares_tac [monoI, subset_refl, CONS_mono] 1));
-qed "Lconst_fun_mono";
-
-(* Lconst(M) = CONS(M,Lconst(M)) *)
-bind_thm ("Lconst", (Lconst_fun_mono RS (Lconst_def RS def_lfp_Tarski)));
-
-(*A typical use of co-induction to show membership in the gfp.
-  The containing set is simply the singleton {Lconst(M)}. *)
-goal LList.thy "!!M A. M:A ==> Lconst(M): llist(A)";
-by (rtac (singletonI RS llist_coinduct) 1);
-by (safe_tac set_cs);
-by (res_inst_tac [("P", "%u. u: ?A")] (Lconst RS ssubst) 1);
-by (REPEAT (ares_tac [list_Fun_CONS_I, singletonI, UnI1] 1));
-qed "Lconst_type";
-
-goal LList.thy "Lconst(M) = LList_corec(M, %x.Inr(<x,x>))";
-by (rtac (equals_LList_corec RS fun_cong) 1);
-by (simp_tac sum_ss 1);
-by (rtac Lconst 1);
-qed "Lconst_eq_LList_corec";
-
-(*Thus we could have used gfp in the definition of Lconst*)
-goal LList.thy "gfp(%N. CONS(M, N)) = LList_corec(M, %x.Inr(<x,x>))";
-by (rtac (equals_LList_corec RS fun_cong) 1);
-by (simp_tac sum_ss 1);
-by (rtac (Lconst_fun_mono RS gfp_Tarski) 1);
-qed "gfp_Lconst_eq_LList_corec";
-
-
-(*** Isomorphisms ***)
-
-goal LList.thy "inj(Rep_llist)";
-by (rtac inj_inverseI 1);
-by (rtac Rep_llist_inverse 1);
-qed "inj_Rep_llist";
-
-goal LList.thy "inj_onto(Abs_llist,llist(range(Leaf)))";
-by (rtac inj_onto_inverseI 1);
-by (etac Abs_llist_inverse 1);
-qed "inj_onto_Abs_llist";
-
-(** Distinctness of constructors **)
-
-goalw LList.thy [LNil_def,LCons_def] "~ LCons(x,xs) = LNil";
-by (rtac (CONS_not_NIL RS (inj_onto_Abs_llist RS inj_onto_contraD)) 1);
-by (REPEAT (resolve_tac (llist.intrs @ [rangeI, Rep_llist]) 1));
-qed "LCons_not_LNil";
-
-bind_thm ("LNil_not_LCons", (LCons_not_LNil RS not_sym));
-
-bind_thm ("LCons_neq_LNil", (LCons_not_LNil RS notE));
-val LNil_neq_LCons = sym RS LCons_neq_LNil;
-
-(** llist constructors **)
-
-goalw LList.thy [LNil_def]
-    "Rep_llist(LNil) = NIL";
-by (rtac (llist.NIL_I RS Abs_llist_inverse) 1);
-qed "Rep_llist_LNil";
-
-goalw LList.thy [LCons_def]
-    "Rep_llist(LCons(x,l)) = CONS(Leaf(x),Rep_llist(l))";
-by (REPEAT (resolve_tac [llist.CONS_I RS Abs_llist_inverse,
-			 rangeI, Rep_llist] 1));
-qed "Rep_llist_LCons";
-
-(** Injectiveness of CONS and LCons **)
-
-goalw LList.thy [CONS_def] "(CONS(M,N)=CONS(M',N')) = (M=M' & N=N')";
-by (fast_tac (HOL_cs addSEs [Scons_inject, make_elim In1_inject]) 1);
-qed "CONS_CONS_eq";
-
-bind_thm ("CONS_inject", (CONS_CONS_eq RS iffD1 RS conjE));
-
-
-(*For reasoning about abstract llist constructors*)
-val llist_cs = set_cs addIs [Rep_llist]@llist.intrs
-	              addSEs [CONS_neq_NIL,NIL_neq_CONS,CONS_inject]
-		      addSDs [inj_onto_Abs_llist RS inj_ontoD,
-			      inj_Rep_llist RS injD, Leaf_inject];
-
-goalw LList.thy [LCons_def] "(LCons(x,xs)=LCons(y,ys)) = (x=y & xs=ys)";
-by (fast_tac llist_cs 1);
-qed "LCons_LCons_eq";
-bind_thm ("LCons_inject", (LCons_LCons_eq RS iffD1 RS conjE));
-
-val [major] = goal LList.thy "CONS(M,N): llist(A) ==> M: A & N: llist(A)";
-by (rtac (major RS llist.elim) 1);
-by (etac CONS_neq_NIL 1);
-by (fast_tac llist_cs 1);
-qed "CONS_D";
-
-
-(****** Reasoning about llist(A) ******)
-
-(*Don't use llist_ss, as it does case splits!*)
-val List_case_ss = univ_ss addsimps [List_case_NIL, List_case_CONS];
-
-(*A special case of list_equality for functions over lazy lists*)
-val [Mlist,gMlist,NILcase,CONScase] = goal LList.thy
- "[| M: llist(A); g(NIL): llist(A); 				\
-\    f(NIL)=g(NIL);						\
-\    !!x l. [| x:A;  l: llist(A) |] ==>				\
-\	    <f(CONS(x,l)),g(CONS(x,l))> :			\
-\               LListD_Fun(diag(A), (%u.<f(u),g(u)>)``llist(A) Un  \
-\                                   diag(llist(A)))		\
-\ |] ==> f(M) = g(M)";
-by (rtac LList_equalityI 1);
-by (rtac (Mlist RS imageI) 1);
-by (rtac subsetI 1);
-by (etac imageE 1);
-by (etac ssubst 1);
-by (etac llist.elim 1);
-by (etac ssubst 1);
-by (stac NILcase 1);
-by (rtac (gMlist RS LListD_Fun_diag_I) 1);
-by (etac ssubst 1);
-by (REPEAT (ares_tac [CONScase] 1));
-qed "LList_fun_equalityI";
-
-
-(*** The functional "Lmap" ***)
-
-goal LList.thy "Lmap(f,NIL) = NIL";
-by (rtac (Lmap_def RS def_LList_corec RS trans) 1);
-by (simp_tac List_case_ss 1);
-qed "Lmap_NIL";
-
-goal LList.thy "Lmap(f, CONS(M,N)) = CONS(f(M), Lmap(f,N))";
-by (rtac (Lmap_def RS def_LList_corec RS trans) 1);
-by (simp_tac List_case_ss 1);
-qed "Lmap_CONS";
-
-(*Another type-checking proof by coinduction*)
-val [major,minor] = goal LList.thy
-    "[| M: llist(A);  !!x. x:A ==> f(x):B |] ==> Lmap(f,M): llist(B)";
-by (rtac (major RS imageI RS llist_coinduct) 1);
-by (safe_tac set_cs);
-by (etac llist.elim 1);
-by (ALLGOALS (asm_simp_tac (HOL_ss addsimps [Lmap_NIL,Lmap_CONS])));
-by (REPEAT (ares_tac [list_Fun_NIL_I, list_Fun_CONS_I, 
-		      minor, imageI, UnI1] 1));
-qed "Lmap_type";
-
-(*This type checking rule synthesises a sufficiently large set for f*)
-val [major] = goal LList.thy  "M: llist(A) ==> Lmap(f,M): llist(f``A)";
-by (rtac (major RS Lmap_type) 1);
-by (etac imageI 1);
-qed "Lmap_type2";
-
-(** Two easy results about Lmap **)
-
-val [prem] = goalw LList.thy [o_def]
-    "M: llist(A) ==> Lmap(f o g, M) = Lmap(f, Lmap(g, M))";
-by (rtac (prem RS imageI RS LList_equalityI) 1);
-by (safe_tac set_cs);
-by (etac llist.elim 1);
-by (ALLGOALS (asm_simp_tac (HOL_ss addsimps [Lmap_NIL,Lmap_CONS])));
-by (REPEAT (ares_tac [LListD_Fun_NIL_I, imageI, UnI1,
-		      rangeI RS LListD_Fun_CONS_I] 1));
-qed "Lmap_compose";
-
-val [prem] = goal LList.thy "M: llist(A) ==> Lmap(%x.x, M) = M";
-by (rtac (prem RS imageI RS LList_equalityI) 1);
-by (safe_tac set_cs);
-by (etac llist.elim 1);
-by (ALLGOALS (asm_simp_tac (HOL_ss addsimps [Lmap_NIL,Lmap_CONS])));
-by (REPEAT (ares_tac [LListD_Fun_NIL_I, imageI RS UnI1,
-		      rangeI RS LListD_Fun_CONS_I] 1));
-qed "Lmap_ident";
-
-
-(*** Lappend -- its two arguments cause some complications! ***)
-
-goalw LList.thy [Lappend_def] "Lappend(NIL,NIL) = NIL";
-by (rtac (LList_corec RS trans) 1);
-by (simp_tac List_case_ss 1);
-qed "Lappend_NIL_NIL";
-
-goalw LList.thy [Lappend_def]
-    "Lappend(NIL,CONS(N,N')) = CONS(N, Lappend(NIL,N'))";
-by (rtac (LList_corec RS trans) 1);
-by (simp_tac List_case_ss 1);
-qed "Lappend_NIL_CONS";
-
-goalw LList.thy [Lappend_def]
-    "Lappend(CONS(M,M'), N) = CONS(M, Lappend(M',N))";
-by (rtac (LList_corec RS trans) 1);
-by (simp_tac List_case_ss 1);
-qed "Lappend_CONS";
-
-val Lappend_ss = 
-    List_case_ss addsimps [llist.NIL_I, Lappend_NIL_NIL, Lappend_NIL_CONS,
-			   Lappend_CONS, LListD_Fun_CONS_I]
-                 |> add_eqI;
-
-goal LList.thy "!!M. M: llist(A) ==> Lappend(NIL,M) = M";
-by (etac LList_fun_equalityI 1);
-by (ALLGOALS (asm_simp_tac Lappend_ss));
-qed "Lappend_NIL";
-
-goal LList.thy "!!M. M: llist(A) ==> Lappend(M,NIL) = M";
-by (etac LList_fun_equalityI 1);
-by (ALLGOALS (asm_simp_tac Lappend_ss));
-qed "Lappend_NIL2";
-
-(** Alternative type-checking proofs for Lappend **)
-
-(*weak co-induction: bisimulation and case analysis on both variables*)
-goal LList.thy
-    "!!M N. [| M: llist(A); N: llist(A) |] ==> Lappend(M,N): llist(A)";
-by (res_inst_tac
-    [("X", "UN u:llist(A). UN v: llist(A). {Lappend(u,v)}")] llist_coinduct 1);
-by (fast_tac set_cs 1);
-by (safe_tac set_cs);
-by (eres_inst_tac [("a", "u")] llist.elim 1);
-by (eres_inst_tac [("a", "v")] llist.elim 1);
-by (ALLGOALS
-    (asm_simp_tac Lappend_ss THEN'
-     fast_tac (set_cs addSIs [llist.NIL_I, list_Fun_NIL_I, list_Fun_CONS_I])));
-qed "Lappend_type";
-
-(*strong co-induction: bisimulation and case analysis on one variable*)
-goal LList.thy
-    "!!M N. [| M: llist(A); N: llist(A) |] ==> Lappend(M,N): llist(A)";
-by (res_inst_tac [("X", "(%u.Lappend(u,N))``llist(A)")] llist_coinduct 1);
-by (etac imageI 1);
-by (rtac subsetI 1);
-by (etac imageE 1);
-by (eres_inst_tac [("a", "u")] llist.elim 1);
-by (asm_simp_tac (Lappend_ss addsimps [Lappend_NIL, list_Fun_llist_I]) 1);
-by (asm_simp_tac Lappend_ss 1);
-by (fast_tac (set_cs addSIs [list_Fun_CONS_I]) 1);
-qed "Lappend_type";
-
-(**** Lazy lists as the type 'a llist -- strongly typed versions of above ****)
-
-(** llist_case: case analysis for 'a llist **)
-
-val Rep_llist_simps =
-                [List_case_NIL, List_case_CONS, 
-		 Abs_llist_inverse, Rep_llist_inverse,
-		 Rep_llist, rangeI, inj_Leaf, Inv_f_f]
-		@ llist.intrs;
-val Rep_llist_ss = llist_ss addsimps Rep_llist_simps;
-
-goalw LList.thy [llist_case_def,LNil_def]  "llist_case(c, d, LNil) = c";
-by (simp_tac Rep_llist_ss 1);
-qed "llist_case_LNil";
-
-goalw LList.thy [llist_case_def,LCons_def]
-    "llist_case(c, d, LCons(M,N)) = d(M,N)";
-by (simp_tac Rep_llist_ss 1);
-qed "llist_case_LCons";
-
-(*Elimination is case analysis, not induction.*)
-val [prem1,prem2] = goalw LList.thy [NIL_def,CONS_def]
-    "[| l=LNil ==> P;  !!x l'. l=LCons(x,l') ==> P \
-\    |] ==> P";
-by (rtac (Rep_llist RS llist.elim) 1);
-by (rtac (inj_Rep_llist RS injD RS prem1) 1);
-by (stac Rep_llist_LNil 1);
-by (assume_tac 1);
-by (etac rangeE 1);
-by (rtac (inj_Rep_llist RS injD RS prem2) 1);
-by (asm_simp_tac (HOL_ss addsimps [Rep_llist_LCons]) 1);
-by (etac (Abs_llist_inverse RS ssubst) 1);
-by (rtac refl 1);
-qed "llistE";
-
-(** llist_corec: corecursion for 'a llist **)
-
-goalw LList.thy [llist_corec_def,LNil_def,LCons_def]
-    "llist_corec(a,f) = sum_case(%u. LNil, \
-\			     split(%z w. LCons(z, llist_corec(w,f))), f(a))";
-by (stac LList_corec 1);
-by (res_inst_tac [("s","f(a)")] sumE 1);
-by (asm_simp_tac (llist_ss addsimps [LList_corec_type2,Abs_llist_inverse]) 1);
-by (res_inst_tac [("p","y")] PairE 1);
-by (asm_simp_tac (llist_ss addsimps [LList_corec_type2,Abs_llist_inverse]) 1);
-(*FIXME: correct case splits usd to be found automatically:
-by (ASM_SIMP_TAC(llist_ss addsimps [LList_corec_type2,Abs_llist_inverse]) 1);*)
-qed "llist_corec";
-
-(*definitional version of same*)
-val [rew] = goal LList.thy
-    "[| !!x. h(x) == llist_corec(x,f) |] ==>	\
-\    h(a) = sum_case(%u.LNil, split(%z w. LCons(z, h(w))), f(a))";
-by (rewtac rew);
-by (rtac llist_corec 1);
-qed "def_llist_corec";
-
-(**** Proofs about type 'a llist functions ****)
-
-(*** Deriving llist_equalityI -- llist equality is a bisimulation ***)
-
-goalw LList.thy [LListD_Fun_def]
-    "!!r A. r <= Sigma(llist(A), %x.llist(A)) ==> \
-\           LListD_Fun(diag(A),r) <= Sigma(llist(A), %x.llist(A))";
-by (stac llist_unfold 1);
-by (simp_tac (HOL_ss addsimps [NIL_def, CONS_def]) 1);
-by (fast_tac univ_cs 1);
-qed "LListD_Fun_subset_Sigma_llist";
-
-goal LList.thy
-    "prod_fun(Rep_llist,Rep_llist) `` r <= \
-\    Sigma(llist(range(Leaf)), %x.llist(range(Leaf)))";
-by (fast_tac (prod_cs addIs [Rep_llist]) 1);
-qed "subset_Sigma_llist";
-
-val [prem] = goal LList.thy
-    "r <= Sigma(llist(range(Leaf)), %x.llist(range(Leaf))) ==> \
-\    prod_fun(Rep_llist o Abs_llist, Rep_llist o Abs_llist) `` r <= r";
-by (safe_tac prod_cs);
-by (rtac (prem RS subsetD RS SigmaE2) 1);
-by (assume_tac 1);
-by (asm_simp_tac (HOL_ss addsimps [o_def,prod_fun,Abs_llist_inverse]) 1);
-qed "prod_fun_lemma";
-
-goal LList.thy
-    "prod_fun(Rep_llist, Rep_llist) `` range(%x. <x, x>) = \
-\    diag(llist(range(Leaf)))";
-by (rtac equalityI 1);
-by (fast_tac (univ_cs addIs [Rep_llist]) 1);
-by (fast_tac (univ_cs addSEs [Abs_llist_inverse RS subst]) 1);
-qed "prod_fun_range_eq_diag";
-
-(** To show two llists are equal, exhibit a bisimulation! 
-      [also admits true equality] **)
-val [prem1,prem2] = goalw LList.thy [llistD_Fun_def]
-    "[| <l1,l2> : r;  r <= llistD_Fun(r Un range(%x.<x,x>)) |] ==> l1=l2";
-by (rtac (inj_Rep_llist RS injD) 1);
-by (res_inst_tac [("r", "prod_fun(Rep_llist,Rep_llist)``r"),
-		  ("A", "range(Leaf)")] 
-	LList_equalityI 1);
-by (rtac (prem1 RS prod_fun_imageI) 1);
-by (rtac (prem2 RS image_mono RS subset_trans) 1);
-by (rtac (image_compose RS subst) 1);
-by (rtac (prod_fun_compose RS subst) 1);
-by (rtac (image_Un RS ssubst) 1);
-by (stac prod_fun_range_eq_diag 1);
-by (rtac (LListD_Fun_subset_Sigma_llist RS prod_fun_lemma) 1);
-by (rtac (subset_Sigma_llist RS Un_least) 1);
-by (rtac diag_subset_Sigma 1);
-qed "llist_equalityI";
-
-(** Rules to prove the 2nd premise of llist_equalityI **)
-goalw LList.thy [llistD_Fun_def,LNil_def] "<LNil,LNil> : llistD_Fun(r)";
-by (rtac (LListD_Fun_NIL_I RS prod_fun_imageI) 1);
-qed "llistD_Fun_LNil_I";
-
-val [prem] = goalw LList.thy [llistD_Fun_def,LCons_def]
-    "<l1,l2>:r ==> <LCons(x,l1), LCons(x,l2)> : llistD_Fun(r)";
-by (rtac (rangeI RS LListD_Fun_CONS_I RS prod_fun_imageI) 1);
-by (rtac (prem RS prod_fun_imageI) 1);
-qed "llistD_Fun_LCons_I";
-
-(*Utilise the "strong" part, i.e. gfp(f)*)
-goalw LList.thy [llistD_Fun_def]
-     "!!l. <l,l> : llistD_Fun(r Un range(%x.<x,x>))";
-by (rtac (Rep_llist_inverse RS subst) 1);
-by (rtac prod_fun_imageI 1);
-by (rtac (image_Un RS ssubst) 1);
-by (stac prod_fun_range_eq_diag 1);
-by (rtac (Rep_llist RS LListD_Fun_diag_I) 1);
-qed "llistD_Fun_range_I";
-
-(*A special case of list_equality for functions over lazy lists*)
-val [prem1,prem2] = goal LList.thy
-    "[| f(LNil)=g(LNil);						\
-\       !!x l. <f(LCons(x,l)),g(LCons(x,l))> :				\
-\              llistD_Fun(range(%u. <f(u),g(u)>) Un range(%v. <v,v>))	\
-\    |]	==> f(l) = (g(l :: 'a llist) :: 'b llist)";
-by (res_inst_tac [("r", "range(%u. <f(u),g(u)>)")] llist_equalityI 1);
-by (rtac rangeI 1);
-by (rtac subsetI 1);
-by (etac rangeE 1);
-by (etac ssubst 1);
-by (res_inst_tac [("l", "u")] llistE 1);
-by (etac ssubst 1);
-by (stac prem1 1);
-by (rtac llistD_Fun_range_I 1);
-by (etac ssubst 1);
-by (rtac prem2 1);
-qed "llist_fun_equalityI";
-
-(*simpset for llist bisimulations*)
-val llistD_simps = [llist_case_LNil, llist_case_LCons, 
-		    llistD_Fun_LNil_I, llistD_Fun_LCons_I];
-(*Don't use llist_ss, as it does case splits!*)
-val llistD_ss = univ_ss addsimps llistD_simps |> add_eqI;
-
-
-(*** The functional "lmap" ***)
-
-goal LList.thy "lmap(f,LNil) = LNil";
-by (rtac (lmap_def RS def_llist_corec RS trans) 1);
-by (simp_tac llistD_ss 1);
-qed "lmap_LNil";
-
-goal LList.thy "lmap(f, LCons(M,N)) = LCons(f(M), lmap(f,N))";
-by (rtac (lmap_def RS def_llist_corec RS trans) 1);
-by (simp_tac llistD_ss 1);
-qed "lmap_LCons";
-
-
-(** Two easy results about lmap **)
-
-goal LList.thy "lmap(f o g, l) = lmap(f, lmap(g, l))";
-by (res_inst_tac [("l","l")] llist_fun_equalityI 1);
-by (ALLGOALS (simp_tac (llistD_ss addsimps [lmap_LNil, lmap_LCons])));
-qed "lmap_compose";
-
-goal LList.thy "lmap(%x.x, l) = l";
-by (res_inst_tac [("l","l")] llist_fun_equalityI 1);
-by (ALLGOALS (simp_tac (llistD_ss addsimps [lmap_LNil, lmap_LCons])));
-qed "lmap_ident";
-
-
-(*** iterates -- llist_fun_equalityI cannot be used! ***)
-
-goal LList.thy "iterates(f,x) = LCons(x, iterates(f,f(x)))";
-by (rtac (iterates_def RS def_llist_corec RS trans) 1);
-by (simp_tac sum_ss 1);
-qed "iterates";
-
-goal LList.thy "lmap(f, iterates(f,x)) = iterates(f,f(x))";
-by (res_inst_tac [("r", "range(%u.<lmap(f,iterates(f,u)),iterates(f,f(u))>)")] 
-    llist_equalityI 1);
-by (rtac rangeI 1);
-by (safe_tac set_cs);
-by (res_inst_tac [("x1", "f(u)")] (iterates RS ssubst) 1);
-by (res_inst_tac [("x1", "u")] (iterates RS ssubst) 1);
-by (simp_tac (llistD_ss addsimps [lmap_LCons]) 1);
-qed "lmap_iterates";
-
-goal LList.thy "iterates(f,x) = LCons(x, lmap(f, iterates(f,x)))";
-by (rtac (lmap_iterates RS ssubst) 1);
-by (rtac iterates 1);
-qed "iterates_lmap";
-
-(*** A rather complex proof about iterates -- cf Andy Pitts ***)
-
-(** Two lemmas about natrec(n,x,%m.g), which is essentially (g^n)(x) **)
-
-goal LList.thy
-    "nat_rec(n, LCons(b, l), %m. lmap(f)) =	\
-\    LCons(nat_rec(n, b, %m. f), nat_rec(n, l, %m. lmap(f)))";
-by (nat_ind_tac "n" 1);
-by (ALLGOALS (asm_simp_tac (nat_ss addsimps [lmap_LCons])));
-qed "fun_power_lmap";
-
-goal Nat.thy "nat_rec(n, g(x), %m. g) = nat_rec(Suc(n), x, %m. g)";
-by (nat_ind_tac "n" 1);
-by (ALLGOALS (asm_simp_tac nat_ss));
-qed "fun_power_Suc";
-
-val Pair_cong = read_instantiate_sg (sign_of Prod.thy)
- [("f","Pair")] (standard(refl RS cong RS cong));
-
-(*The bisimulation consists of {<lmap(f)^n (h(u)), lmap(f)^n (iterates(f,u))>}
-  for all u and all n::nat.*)
-val [prem] = goal LList.thy
-    "(!!x. h(x) = LCons(x, lmap(f,h(x)))) ==> h = iterates(f)";
-by (rtac ext 1);
-by (res_inst_tac [("r", 
-   "UN u. range(%n. <nat_rec(n, h(u), %m y.lmap(f,y)), \
-\                  nat_rec(n, iterates(f,u), %m y.lmap(f,y))>)")] 
-    llist_equalityI 1);
-by (REPEAT (resolve_tac [UN1_I, range_eqI, Pair_cong, nat_rec_0 RS sym] 1));
-by (safe_tac set_cs);
-by (stac iterates 1);
-by (stac prem 1);
-by (stac fun_power_lmap 1);
-by (stac fun_power_lmap 1);
-by (rtac llistD_Fun_LCons_I 1);
-by (rtac (lmap_iterates RS subst) 1);
-by (stac fun_power_Suc 1);
-by (stac fun_power_Suc 1);
-by (rtac (UN1_I RS UnI1) 1);
-by (rtac rangeI 1);
-qed "iterates_equality";
-
-
-(*** lappend -- its two arguments cause some complications! ***)
-
-goalw LList.thy [lappend_def] "lappend(LNil,LNil) = LNil";
-by (rtac (llist_corec RS trans) 1);
-by (simp_tac llistD_ss 1);
-qed "lappend_LNil_LNil";
-
-goalw LList.thy [lappend_def]
-    "lappend(LNil,LCons(l,l')) = LCons(l, lappend(LNil,l'))";
-by (rtac (llist_corec RS trans) 1);
-by (simp_tac llistD_ss 1);
-qed "lappend_LNil_LCons";
-
-goalw LList.thy [lappend_def]
-    "lappend(LCons(l,l'), N) = LCons(l, lappend(l',N))";
-by (rtac (llist_corec RS trans) 1);
-by (simp_tac llistD_ss 1);
-qed "lappend_LCons";
-
-goal LList.thy "lappend(LNil,l) = l";
-by (res_inst_tac [("l","l")] llist_fun_equalityI 1);
-by (ALLGOALS 
-    (simp_tac (llistD_ss addsimps [lappend_LNil_LNil, lappend_LNil_LCons])));
-qed "lappend_LNil";
-
-goal LList.thy "lappend(l,LNil) = l";
-by (res_inst_tac [("l","l")] llist_fun_equalityI 1);
-by (ALLGOALS 
-    (simp_tac (llistD_ss addsimps [lappend_LNil_LNil, lappend_LCons])));
-qed "lappend_LNil2";
-
-(*The infinite first argument blocks the second*)
-goal LList.thy "lappend(iterates(f,x), N) = iterates(f,x)";
-by (res_inst_tac [("r", "range(%u.<lappend(iterates(f,u),N),iterates(f,u)>)")] 
-    llist_equalityI 1);
-by (rtac rangeI 1);
-by (safe_tac set_cs);
-by (stac iterates 1);
-by (simp_tac (llistD_ss addsimps [lappend_LCons]) 1);
-qed "lappend_iterates";
-
-(** Two proofs that lmap distributes over lappend **)
-
-(*Long proof requiring case analysis on both both arguments*)
-goal LList.thy "lmap(f, lappend(l,n)) = lappend(lmap(f,l), lmap(f,n))";
-by (res_inst_tac 
-    [("r",  
-      "UN n. range(%l.<lmap(f,lappend(l,n)), lappend(lmap(f,l),lmap(f,n))>)")] 
-    llist_equalityI 1);
-by (rtac UN1_I 1);
-by (rtac rangeI 1);
-by (safe_tac set_cs);
-by (res_inst_tac [("l", "l")] llistE 1);
-by (res_inst_tac [("l", "n")] llistE 1);
-by (ALLGOALS (asm_simp_tac (llistD_ss addsimps
-      [lappend_LNil_LNil,lappend_LCons,lappend_LNil_LCons,
-       lmap_LNil,lmap_LCons])));
-by (REPEAT_SOME (ares_tac [llistD_Fun_LCons_I, UN1_I RS UnI1, rangeI]));
-by (rtac range_eqI 1);
-by (rtac (refl RS Pair_cong) 1);
-by (stac lmap_LNil 1);
-by (rtac refl 1);
-qed "lmap_lappend_distrib";
-
-(*Shorter proof of theorem above using llist_equalityI as strong coinduction*)
-goal LList.thy "lmap(f, lappend(l,n)) = lappend(lmap(f,l), lmap(f,n))";
-by (res_inst_tac [("l","l")] llist_fun_equalityI 1);
-by (simp_tac (llistD_ss addsimps [lappend_LNil, lmap_LNil])1);
-by (simp_tac (llistD_ss addsimps [lappend_LCons, lmap_LCons]) 1);
-qed "lmap_lappend_distrib";
-
-(*Without strong coinduction, three case analyses might be needed*)
-goal LList.thy "lappend(lappend(l1,l2) ,l3) = lappend(l1, lappend(l2,l3))";
-by (res_inst_tac [("l","l1")] llist_fun_equalityI 1);
-by (simp_tac (llistD_ss addsimps [lappend_LNil])1);
-by (simp_tac (llistD_ss addsimps [lappend_LCons]) 1);
-qed "lappend_assoc";