ex/LList.thy
changeset 252 a4dc62a46ee4
parent 251 f04b33ce250f
child 253 132634d24019
--- a/ex/LList.thy	Tue Oct 24 14:59:17 1995 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,145 +0,0 @@
-(*  Title: 	HOL/LList.thy
-    ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1994  University of Cambridge
-
-Definition of type 'a llist by a greatest fixed point
-
-Shares NIL, CONS, List_case with List.thy
-
-Still needs filter and flatten functions -- hard because they need
-bounds on the amount of lookahead required.
-
-Could try (but would it work for the gfp analogue of term?)
-  LListD_Fun_def "LListD_Fun(A) == (%Z.diag({Numb(0)}) <++> diag(A) <**> Z)"
-
-A nice but complex example would be [ML for the Working Programmer, page 176]
-  from(1) = enumerate (Lmap (Lmap(pack), makeqq(from(1),from(1))))
-
-Previous definition of llistD_Fun was explicit:
-  llistD_Fun_def
-   "llistD_Fun(r) == 	
-       {<LNil,LNil>}  Un  	
-       (UN x. (split(%l1 l2.<LCons(x,l1),LCons(x,l2)>))``r)"
-*)
-
-LList = Gfp + SList +
-
-types
-  'a llist
-
-arities
-   llist :: (term)term
-
-consts
-  list_Fun   :: "['a item set, 'a item set] => 'a item set"
-  LListD_Fun :: 
-      "[('a item * 'a item)set, ('a item * 'a item)set] => 
-      ('a item * 'a item)set"
-
-  llist      :: "'a item set => 'a item set"
-  LListD     :: "('a item * 'a item)set => ('a item * 'a item)set"
-  llistD_Fun :: "('a llist * 'a llist)set => ('a llist * 'a llist)set"
-
-  Rep_llist  :: "'a llist => 'a item"
-  Abs_llist  :: "'a item => 'a llist"
-  LNil       :: "'a llist"
-  LCons      :: "['a, 'a llist] => 'a llist"
-  
-  llist_case :: "['b, ['a, 'a llist]=>'b, 'a llist] => 'b"
-
-  LList_corec_fun :: "[nat, 'a=>unit+('b item * 'a), 'a] => 'b item"
-  LList_corec     :: "['a, 'a => unit + ('b item * 'a)] => 'b item"
-  llist_corec     :: "['a, 'a => unit + ('b * 'a)] => 'b llist"
-
-  Lmap	     :: "('a item => 'b item) => ('a item => 'b item)"
-  lmap	     :: "('a=>'b) => ('a llist => 'b llist)"
-
-  iterates   :: "['a => 'a, 'a] => 'a llist"
-
-  Lconst     :: "'a item => 'a item"
-  Lappend    :: "['a item, 'a item] => 'a item"
-  lappend    :: "['a llist, 'a llist] => 'a llist"
-
-
-coinductive "llist(A)"
-  intrs
-    NIL_I  "NIL: llist(A)"
-    CONS_I "[| a: A;  M: llist(A) |] ==> CONS(a,M) : llist(A)"
-
-coinductive "LListD(r)"
-  intrs
-    NIL_I  "<NIL, NIL> : LListD(r)"
-    CONS_I "[| <a,b>: r;  <M,N> : LListD(r)   
-	    |] ==> <CONS(a,M), CONS(b,N)> : LListD(r)"
-
-defs
-  (*Now used exclusively for abbreviating the coinduction rule*)
-  list_Fun_def   "list_Fun(A,X) ==   
-		  {z. z = NIL | (? M a. z = CONS(a, M) & a : A & M : X)}"
-
-  LListD_Fun_def "LListD_Fun(r,X) ==   
-		  {z. z = <NIL, NIL> |   
-		      (? M N a b. z = <CONS(a, M), CONS(b, N)> &   
-		                  <a, b> : r & <M, N> : X)}"
-
-  (*defining the abstract constructors*)
-  LNil_def  	"LNil == Abs_llist(NIL)"
-  LCons_def 	"LCons(x,xs) == Abs_llist(CONS(Leaf(x), Rep_llist(xs)))"
-
-  llist_case_def
-   "llist_case(c,d,l) == 
-       List_case(c, %x y. d(Inv(Leaf,x), Abs_llist(y)), Rep_llist(l))"
-
-  LList_corec_fun_def
-    "LList_corec_fun(k,f) == 
-     nat_rec(k, %x. {}, 			
-	        %j r x. sum_case(%u.NIL, split(%z w. CONS(z, r(w))), f(x)))"
-
-  LList_corec_def
-    "LList_corec(a,f) == UN k. LList_corec_fun(k,f,a)"
-
-  llist_corec_def
-   "llist_corec(a,f) == 
-       Abs_llist(LList_corec(a, %z.sum_case(%x.Inl(x), 
-                                    split(%v w. Inr(<Leaf(v), w>)), f(z))))"
-
-  llistD_Fun_def
-   "llistD_Fun(r) == 	
-	prod_fun(Abs_llist,Abs_llist) ``  	
-                LListD_Fun(diag(range(Leaf)), 	
-		            prod_fun(Rep_llist,Rep_llist) `` r)"
-
-  Lconst_def	"Lconst(M) == lfp(%N. CONS(M, N))"     
-
-  Lmap_def
-   "Lmap(f,M) == LList_corec(M, List_case(Inl(Unity), %x M'. Inr(<f(x), M'>)))"
-
-  lmap_def
-   "lmap(f,l) == llist_corec(l, llist_case(Inl(Unity), %y z. Inr(<f(y), z>)))"
-
-  iterates_def	"iterates(f,a) == llist_corec(a, %x. Inr(<x, f(x)>))"     
-
-(*Append generates its result by applying f, where
-    f(<NIL,NIL>) = Inl(Unity)
-    f(<NIL, CONS(N1,N2)>) = Inr(<N1, <NIL,N2>)
-    f(<CONS(M1,M2), N>)    = Inr(<M1, <M2,N>)
-*)
-
-  Lappend_def
-   "Lappend(M,N) == LList_corec(<M,N>,   				
-     split(List_case(List_case(Inl(Unity), %N1 N2. Inr(<N1, <NIL,N2>>)), 
-                     %M1 M2 N. Inr(<M1, <M2,N>>))))"
-
-  lappend_def
-   "lappend(l,n) == llist_corec(<l,n>,   				
-     split(llist_case(llist_case(Inl(Unity), %n1 n2. Inr(<n1, <LNil,n2>>)), 
-                         %l1 l2 n. Inr(<l1, <l2,n>>))))"
-
-rules
-    (*faking a type definition...*)
-  Rep_llist 	    "Rep_llist(xs): llist(range(Leaf))"
-  Rep_llist_inverse "Abs_llist(Rep_llist(xs)) = xs"
-  Abs_llist_inverse "M: llist(range(Leaf)) ==> Rep_llist(Abs_llist(M)) = M"
-
-end