ex/MT.ML
changeset 252 a4dc62a46ee4
parent 251 f04b33ce250f
child 253 132634d24019
--- a/ex/MT.ML	Tue Oct 24 14:59:17 1995 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,799 +0,0 @@
-(*  Title: 	HOL/ex/mt.ML
-    ID:         $Id$
-    Author: 	Jacob Frost, Cambridge University Computer Laboratory
-    Copyright   1993  University of Cambridge
-
-Based upon the article
-    Robin Milner and Mads Tofte,
-    Co-induction in Relational Semantics,
-    Theoretical Computer Science 87 (1991), pages 209-220.
-
-Written up as
-    Jacob Frost, A Case Study of Co-induction in Isabelle/HOL
-    Report 308, Computer Lab, University of Cambridge (1993).
-
-NEEDS TO USE INDUCTIVE DEFS PACKAGE
-*)
-
-open MT;
-
-val prems = goal MT.thy "~a:{b} ==> ~a=b";
-by (cut_facts_tac prems 1);
-by (rtac notI 1);
-by (dtac notE 1);
-by (hyp_subst_tac 1);
-by (rtac singletonI 1);
-by (assume_tac 1);
-qed "notsingletonI";
-
-(* ############################################################ *)
-(* Inference systems                                            *)
-(* ############################################################ *)
-
-val infsys_mono_tac =
-  (rewtac subset_def) THEN (safe_tac HOL_cs) THEN (rtac ballI 1) THEN
-  (rtac CollectI 1) THEN (dtac CollectD 1) THEN
-  REPEAT 
-    ( (TRY ((etac disjE 1) THEN (rtac disjI2 2) THEN (rtac disjI1 1))) THEN
-      (REPEAT (etac exE 1)) THEN (REPEAT (rtac exI 1)) THEN (fast_tac set_cs 1)
-    );
-
-val prems = goal MT.thy "P(a,b) ==> P(fst(<a,b>),snd(<a,b>))";
-by (simp_tac (prod_ss addsimps prems) 1);
-qed "infsys_p1";
-
-val prems = goal MT.thy "!!a b. P(fst(<a,b>),snd(<a,b>)) ==> P(a,b)";
-by (asm_full_simp_tac prod_ss 1);
-qed "infsys_p2";
-
-val prems = goal MT.thy 
-  "P(a,b,c) ==> P(fst(fst(<<a,b>,c>)),snd(fst(<<a,b>,c>)),snd(<<a,b>,c>))";
-by (simp_tac (prod_ss addsimps prems) 1);
-qed "infsys_pp1";
-
-goal MT.thy 
-  "!!a.P(fst(fst(<<a,b>,c>)),snd(fst(<<a,b>,c>)),snd(<<a,b>,c>)) ==> P(a,b,c)";
-by (asm_full_simp_tac prod_ss 1);
-qed "infsys_pp2";
-
-(* ############################################################ *)
-(* Fixpoints                                                    *)
-(* ############################################################ *)
-
-(* Least fixpoints *)
-
-val prems = goal MT.thy "[| mono(f); x:f(lfp(f)) |] ==> x:lfp(f)";
-by (rtac subsetD 1);
-by (rtac lfp_lemma2 1);
-by (resolve_tac prems 1);
-by (resolve_tac prems 1);
-qed "lfp_intro2";
-
-val prems = goal MT.thy
-  " [| x:lfp(f); mono(f); !!y. y:f(lfp(f)) ==> P(y) |] ==> \
-\   P(x)";
-by (cut_facts_tac prems 1);
-by (resolve_tac prems 1);
-by (rtac subsetD 1);
-by (rtac lfp_lemma3 1);
-by (assume_tac 1);
-by (assume_tac 1);
-qed "lfp_elim2";
-
-val prems = goal MT.thy
-  " [| x:lfp(f); mono(f); !!y. y:f(lfp(f) Int {x.P(x)}) ==> P(y) |] ==> \
-\   P(x)";
-by (cut_facts_tac prems 1);
-by (etac induct 1);
-by (assume_tac 1);
-by (eresolve_tac prems 1);
-qed "lfp_ind2";
-
-(* Greatest fixpoints *)
-
-(* Note : "[| x:S; S <= f(S Un gfp(f)); mono(f) |] ==> x:gfp(f)" *)
-
-val [cih,monoh] = goal MT.thy "[| x:f({x} Un gfp(f)); mono(f) |] ==> x:gfp(f)";
-by (rtac (cih RSN (2,gfp_upperbound RS subsetD)) 1);
-by (rtac (monoh RS monoD) 1);
-by (rtac (UnE RS subsetI) 1);
-by (assume_tac 1);
-by (fast_tac (set_cs addSIs [cih]) 1);
-by (rtac (monoh RS monoD RS subsetD) 1);
-by (rtac Un_upper2 1);
-by (etac (monoh RS gfp_lemma2 RS subsetD) 1);
-qed "gfp_coind2";
-
-val [gfph,monoh,caseh] = goal MT.thy 
-  "[| x:gfp(f); mono(f); !! y. y:f(gfp(f)) ==> P(y) |] ==> P(x)";
-by (rtac caseh 1);
-by (rtac subsetD 1);
-by (rtac gfp_lemma2 1);
-by (rtac monoh 1);
-by (rtac gfph 1);
-qed "gfp_elim2";
-
-(* ############################################################ *)
-(* Expressions                                                  *)
-(* ############################################################ *)
-
-val e_injs = [e_const_inj, e_var_inj, e_fn_inj, e_fix_inj, e_app_inj];
-
-val e_disjs = 
-  [ e_disj_const_var, 
-    e_disj_const_fn, 
-    e_disj_const_fix, 
-    e_disj_const_app,
-    e_disj_var_fn, 
-    e_disj_var_fix, 
-    e_disj_var_app, 
-    e_disj_fn_fix, 
-    e_disj_fn_app, 
-    e_disj_fix_app
-  ];
-
-val e_disj_si = e_disjs @ (e_disjs RL [not_sym]);
-val e_disj_se = (e_disj_si RL [notE]);
-
-fun e_ext_cs cs = cs addSIs e_disj_si addSEs e_disj_se addSDs e_injs;
-
-(* ############################################################ *)
-(* Values                                                      *)
-(* ############################################################ *)
-
-val v_disjs = [v_disj_const_clos];
-val v_disj_si = v_disjs @ (v_disjs RL [not_sym]);
-val v_disj_se = (v_disj_si RL [notE]);
-
-val v_injs = [v_const_inj, v_clos_inj];
-
-fun v_ext_cs cs  = cs addSIs v_disj_si addSEs v_disj_se addSDs v_injs;
-
-(* ############################################################ *)
-(* Evaluations                                                  *)
-(* ############################################################ *)
-
-(* Monotonicity of eval_fun *)
-
-goalw MT.thy [mono_def, eval_fun_def] "mono(eval_fun)";
-(*Causes the most horrendous flexflex-trace.*)
-by infsys_mono_tac;
-qed "eval_fun_mono";
-
-(* Introduction rules *)
-
-goalw MT.thy [eval_def, eval_rel_def] "ve |- e_const(c) ---> v_const(c)";
-by (rtac lfp_intro2 1);
-by (rtac eval_fun_mono 1);
-by (rewtac eval_fun_def);
-by (fast_tac set_cs 1);
-qed "eval_const";
-
-val prems = goalw MT.thy [eval_def, eval_rel_def] 
-  "ev:ve_dom(ve) ==> ve |- e_var(ev) ---> ve_app(ve,ev)";
-by (cut_facts_tac prems 1);
-by (rtac lfp_intro2 1);
-by (rtac eval_fun_mono 1);
-by (rewtac eval_fun_def);
-by (fast_tac set_cs 1);
-qed "eval_var";
-
-val prems = goalw MT.thy [eval_def, eval_rel_def] 
-  "ve |- fn ev => e ---> v_clos(<|ev,e,ve|>)";
-by (cut_facts_tac prems 1);
-by (rtac lfp_intro2 1);
-by (rtac eval_fun_mono 1);
-by (rewtac eval_fun_def);
-by (fast_tac set_cs 1);
-qed "eval_fn";
-
-val prems = goalw MT.thy [eval_def, eval_rel_def] 
-  " cl = <| ev1, e, ve + {ev2 |-> v_clos(cl)} |> ==> \
-\   ve |- fix ev2(ev1) = e ---> v_clos(cl)";
-by (cut_facts_tac prems 1);
-by (rtac lfp_intro2 1);
-by (rtac eval_fun_mono 1);
-by (rewtac eval_fun_def);
-by (fast_tac set_cs 1);
-qed "eval_fix";
-
-val prems = goalw MT.thy [eval_def, eval_rel_def]
-  " [| ve |- e1 ---> v_const(c1); ve |- e2 ---> v_const(c2) |] ==> \
-\   ve |- e1 @ e2 ---> v_const(c_app(c1,c2))";
-by (cut_facts_tac prems 1);
-by (rtac lfp_intro2 1);
-by (rtac eval_fun_mono 1);
-by (rewtac eval_fun_def);
-by (fast_tac set_cs 1);
-qed "eval_app1";
-
-val prems = goalw MT.thy [eval_def, eval_rel_def] 
-  " [|  ve |- e1 ---> v_clos(<|xm,em,vem|>); \
-\       ve |- e2 ---> v2; \
-\       vem + {xm |-> v2} |- em ---> v \
-\   |] ==> \
-\   ve |- e1 @ e2 ---> v";
-by (cut_facts_tac prems 1);
-by (rtac lfp_intro2 1);
-by (rtac eval_fun_mono 1);
-by (rewtac eval_fun_def);
-by (fast_tac (set_cs addSIs [disjI2]) 1);
-qed "eval_app2";
-
-(* Strong elimination, induction on evaluations *)
-
-val prems = goalw MT.thy [eval_def, eval_rel_def]
-  " [| ve |- e ---> v; \
-\      !!ve c. P(<<ve,e_const(c)>,v_const(c)>); \
-\      !!ev ve. ev:ve_dom(ve) ==> P(<<ve,e_var(ev)>,ve_app(ve,ev)>); \
-\      !!ev ve e. P(<<ve,fn ev => e>,v_clos(<|ev,e,ve|>)>); \
-\      !!ev1 ev2 ve cl e. \
-\        cl = <| ev1, e, ve + {ev2 |-> v_clos(cl)} |> ==> \
-\        P(<<ve,fix ev2(ev1) = e>,v_clos(cl)>); \
-\      !!ve c1 c2 e1 e2. \
-\        [| P(<<ve,e1>,v_const(c1)>); P(<<ve,e2>,v_const(c2)>) |] ==> \
-\        P(<<ve,e1 @ e2>,v_const(c_app(c1,c2))>); \
-\      !!ve vem xm e1 e2 em v v2. \
-\        [|  P(<<ve,e1>,v_clos(<|xm,em,vem|>)>); \
-\            P(<<ve,e2>,v2>); \
-\            P(<<vem + {xm |-> v2},em>,v>) \
-\        |] ==> \
-\        P(<<ve,e1 @ e2>,v>) \
-\   |] ==> \
-\   P(<<ve,e>,v>)";
-by (resolve_tac (prems RL [lfp_ind2]) 1);
-by (rtac eval_fun_mono 1);
-by (rewtac eval_fun_def);
-by (dtac CollectD 1);
-by (safe_tac HOL_cs);
-by (ALLGOALS (resolve_tac prems));
-by (ALLGOALS (fast_tac set_cs));
-qed "eval_ind0";
-
-val prems = goal MT.thy 
-  " [| ve |- e ---> v; \
-\      !!ve c. P(ve,e_const(c),v_const(c)); \
-\      !!ev ve. ev:ve_dom(ve) ==> P(ve,e_var(ev),ve_app(ve,ev)); \
-\      !!ev ve e. P(ve,fn ev => e,v_clos(<|ev,e,ve|>)); \
-\      !!ev1 ev2 ve cl e. \
-\        cl = <| ev1, e, ve + {ev2 |-> v_clos(cl)} |> ==> \
-\        P(ve,fix ev2(ev1) = e,v_clos(cl)); \
-\      !!ve c1 c2 e1 e2. \
-\        [| P(ve,e1,v_const(c1)); P(ve,e2,v_const(c2)) |] ==> \
-\        P(ve,e1 @ e2,v_const(c_app(c1,c2))); \
-\      !!ve vem evm e1 e2 em v v2. \
-\        [|  P(ve,e1,v_clos(<|evm,em,vem|>)); \
-\            P(ve,e2,v2); \
-\            P(vem + {evm |-> v2},em,v) \
-\        |] ==> P(ve,e1 @ e2,v) \
-\   |] ==> P(ve,e,v)";
-by (res_inst_tac [("P","P")] infsys_pp2 1);
-by (rtac eval_ind0 1);
-by (ALLGOALS (rtac infsys_pp1));
-by (ALLGOALS (resolve_tac prems));
-by (REPEAT ((assume_tac 1) ORELSE (dtac infsys_pp2 1)));
-qed "eval_ind";
-
-(* ############################################################ *)
-(* Elaborations                                                 *)
-(* ############################################################ *)
-
-goalw MT.thy [mono_def, elab_fun_def] "mono(elab_fun)";
-by infsys_mono_tac;
-qed "elab_fun_mono";
-
-(* Introduction rules *)
-
-val prems = goalw MT.thy [elab_def, elab_rel_def] 
-  "c isof ty ==> te |- e_const(c) ===> ty";
-by (cut_facts_tac prems 1);
-by (rtac lfp_intro2 1);
-by (rtac elab_fun_mono 1);
-by (rewtac elab_fun_def);
-by (fast_tac set_cs 1);
-qed "elab_const";
-
-val prems = goalw MT.thy [elab_def, elab_rel_def] 
-  "x:te_dom(te) ==> te |- e_var(x) ===> te_app(te,x)";
-by (cut_facts_tac prems 1);
-by (rtac lfp_intro2 1);
-by (rtac elab_fun_mono 1);
-by (rewtac elab_fun_def);
-by (fast_tac set_cs 1);
-qed "elab_var";
-
-val prems = goalw MT.thy [elab_def, elab_rel_def] 
-  "te + {x |=> ty1} |- e ===> ty2 ==> te |- fn x => e ===> ty1->ty2";
-by (cut_facts_tac prems 1);
-by (rtac lfp_intro2 1);
-by (rtac elab_fun_mono 1);
-by (rewtac elab_fun_def);
-by (fast_tac set_cs 1);
-qed "elab_fn";
-
-val prems = goalw MT.thy [elab_def, elab_rel_def]
-  " te + {f |=> ty1->ty2} + {x |=> ty1} |- e ===> ty2 ==> \
-\   te |- fix f(x) = e ===> ty1->ty2";
-by (cut_facts_tac prems 1);
-by (rtac lfp_intro2 1);
-by (rtac elab_fun_mono 1);
-by (rewtac elab_fun_def);
-by (rtac CollectI 1);
-by (rtac disjI2 1);
-by (rtac disjI2 1);
-by (rtac disjI2 1);
-by (rtac disjI1 1);
-by (fast_tac HOL_cs 1);
-qed "elab_fix";
-
-val prems = goalw MT.thy [elab_def, elab_rel_def] 
-  " [| te |- e1 ===> ty1->ty2; te |- e2 ===> ty1 |] ==> \
-\   te |- e1 @ e2 ===> ty2";
-by (cut_facts_tac prems 1);
-by (rtac lfp_intro2 1);
-by (rtac elab_fun_mono 1);
-by (rewtac elab_fun_def);
-by (fast_tac (set_cs addSIs [disjI2]) 1);
-qed "elab_app";
-
-(* Strong elimination, induction on elaborations *)
-
-val prems = goalw MT.thy [elab_def, elab_rel_def]
-  " [| te |- e ===> t; \
-\      !!te c t. c isof t ==> P(<<te,e_const(c)>,t>); \
-\      !!te x. x:te_dom(te) ==> P(<<te,e_var(x)>,te_app(te,x)>); \
-\      !!te x e t1 t2. \
-\        [| te + {x |=> t1} |- e ===> t2; P(<<te + {x |=> t1},e>,t2>) |] ==> \
-\        P(<<te,fn x => e>,t1->t2>); \
-\      !!te f x e t1 t2. \
-\        [| te + {f |=> t1->t2} + {x |=> t1} |- e ===> t2; \
-\           P(<<te + {f |=> t1->t2} + {x |=> t1},e>,t2>) \
-\        |] ==> \
-\        P(<<te,fix f(x) = e>,t1->t2>); \
-\      !!te e1 e2 t1 t2. \
-\        [| te |- e1 ===> t1->t2; P(<<te,e1>,t1->t2>); \
-\           te |- e2 ===> t1; P(<<te,e2>,t1>) \
-\        |] ==> \
-\        P(<<te,e1 @ e2>,t2>) \
-\   |] ==> \
-\   P(<<te,e>,t>)";
-by (resolve_tac (prems RL [lfp_ind2]) 1);
-by (rtac elab_fun_mono 1);
-by (rewtac elab_fun_def);
-by (dtac CollectD 1);
-by (safe_tac HOL_cs);
-by (ALLGOALS (resolve_tac prems));
-by (ALLGOALS (fast_tac set_cs));
-qed "elab_ind0";
-
-val prems = goal MT.thy
-  " [| te |- e ===> t; \
-\       !!te c t. c isof t ==> P(te,e_const(c),t); \
-\      !!te x. x:te_dom(te) ==> P(te,e_var(x),te_app(te,x)); \
-\      !!te x e t1 t2. \
-\        [| te + {x |=> t1} |- e ===> t2; P(te + {x |=> t1},e,t2) |] ==> \
-\        P(te,fn x => e,t1->t2); \
-\      !!te f x e t1 t2. \
-\        [| te + {f |=> t1->t2} + {x |=> t1} |- e ===> t2; \
-\           P(te + {f |=> t1->t2} + {x |=> t1},e,t2) \
-\        |] ==> \
-\        P(te,fix f(x) = e,t1->t2); \
-\      !!te e1 e2 t1 t2. \
-\        [| te |- e1 ===> t1->t2; P(te,e1,t1->t2); \
-\           te |- e2 ===> t1; P(te,e2,t1) \
-\        |] ==> \
-\        P(te,e1 @ e2,t2) \ 
-\   |] ==> \
-\   P(te,e,t)";
-by (res_inst_tac [("P","P")] infsys_pp2 1);
-by (rtac elab_ind0 1);
-by (ALLGOALS (rtac infsys_pp1));
-by (ALLGOALS (resolve_tac prems));
-by (REPEAT ((assume_tac 1) ORELSE (dtac infsys_pp2 1)));
-qed "elab_ind";
-
-(* Weak elimination, case analysis on elaborations *)
-
-val prems = goalw MT.thy [elab_def, elab_rel_def]
-  " [| te |- e ===> t; \
-\      !!te c t. c isof t ==> P(<<te,e_const(c)>,t>); \
-\      !!te x. x:te_dom(te) ==> P(<<te,e_var(x)>,te_app(te,x)>); \
-\      !!te x e t1 t2. \
-\        te + {x |=> t1} |- e ===> t2 ==> P(<<te,fn x => e>,t1->t2>); \
-\      !!te f x e t1 t2. \
-\        te + {f |=> t1->t2} + {x |=> t1} |- e ===> t2 ==> \
-\        P(<<te,fix f(x) = e>,t1->t2>); \
-\      !!te e1 e2 t1 t2. \
-\        [| te |- e1 ===> t1->t2; te |- e2 ===> t1 |] ==> \
-\        P(<<te,e1 @ e2>,t2>) \
-\   |] ==> \
-\   P(<<te,e>,t>)";
-by (resolve_tac (prems RL [lfp_elim2]) 1);
-by (rtac elab_fun_mono 1);
-by (rewtac elab_fun_def);
-by (dtac CollectD 1);
-by (safe_tac HOL_cs);
-by (ALLGOALS (resolve_tac prems));
-by (ALLGOALS (fast_tac set_cs));
-qed "elab_elim0";
-
-val prems = goal MT.thy
-  " [| te |- e ===> t; \
-\       !!te c t. c isof t ==> P(te,e_const(c),t); \
-\      !!te x. x:te_dom(te) ==> P(te,e_var(x),te_app(te,x)); \
-\      !!te x e t1 t2. \
-\        te + {x |=> t1} |- e ===> t2 ==> P(te,fn x => e,t1->t2); \
-\      !!te f x e t1 t2. \
-\        te + {f |=> t1->t2} + {x |=> t1} |- e ===> t2 ==> \
-\        P(te,fix f(x) = e,t1->t2); \
-\      !!te e1 e2 t1 t2. \
-\        [| te |- e1 ===> t1->t2; te |- e2 ===> t1 |] ==> \
-\        P(te,e1 @ e2,t2) \ 
-\   |] ==> \
-\   P(te,e,t)";
-by (res_inst_tac [("P","P")] infsys_pp2 1);
-by (rtac elab_elim0 1);
-by (ALLGOALS (rtac infsys_pp1));
-by (ALLGOALS (resolve_tac prems));
-by (REPEAT ((assume_tac 1) ORELSE (dtac infsys_pp2 1)));
-qed "elab_elim";
-
-(* Elimination rules for each expression *)
-
-fun elab_e_elim_tac p = 
-  ( (rtac elab_elim 1) THEN 
-    (resolve_tac p 1) THEN 
-    (REPEAT (fast_tac (e_ext_cs HOL_cs) 1))
-  );
-
-val prems = goal MT.thy "te |- e ===> t ==> (e = e_const(c) --> c isof t)";
-by (elab_e_elim_tac prems);
-qed "elab_const_elim_lem";
-
-val prems = goal MT.thy "te |- e_const(c) ===> t ==> c isof t";
-by (cut_facts_tac prems 1);
-by (dtac elab_const_elim_lem 1);
-by (fast_tac prop_cs 1);
-qed "elab_const_elim";
-
-val prems = goal MT.thy 
-  "te |- e ===> t ==> (e = e_var(x) --> t=te_app(te,x) & x:te_dom(te))";
-by (elab_e_elim_tac prems);
-qed "elab_var_elim_lem";
-
-val prems = goal MT.thy 
-  "te |- e_var(ev) ===> t ==> t=te_app(te,ev) & ev : te_dom(te)";
-by (cut_facts_tac prems 1);
-by (dtac elab_var_elim_lem 1);
-by (fast_tac prop_cs 1);
-qed "elab_var_elim";
-
-val prems = goal MT.thy 
-  " te |- e ===> t ==> \
-\   ( e = fn x1 => e1 --> \
-\     (? t1 t2.t=t_fun(t1,t2) & te + {x1 |=> t1} |- e1 ===> t2) \
-\   )";
-by (elab_e_elim_tac prems);
-qed "elab_fn_elim_lem";
-
-val prems = goal MT.thy 
-  " te |- fn x1 => e1 ===> t ==> \
-\   (? t1 t2. t=t1->t2 & te + {x1 |=> t1} |- e1 ===> t2)";
-by (cut_facts_tac prems 1);
-by (dtac elab_fn_elim_lem 1);
-by (fast_tac prop_cs 1);
-qed "elab_fn_elim";
-
-val prems = goal MT.thy 
-  " te |- e ===> t ==> \
-\   (e = fix f(x) = e1 --> \
-\   (? t1 t2. t=t1->t2 & te + {f |=> t1->t2} + {x |=> t1} |- e1 ===> t2))"; 
-by (elab_e_elim_tac prems);
-qed "elab_fix_elim_lem";
-
-val prems = goal MT.thy 
-  " te |- fix ev1(ev2) = e1 ===> t ==> \
-\   (? t1 t2. t=t1->t2 & te + {ev1 |=> t1->t2} + {ev2 |=> t1} |- e1 ===> t2)";
-by (cut_facts_tac prems 1);
-by (dtac elab_fix_elim_lem 1);
-by (fast_tac prop_cs 1);
-qed "elab_fix_elim";
-
-val prems = goal MT.thy 
-  " te |- e ===> t2 ==> \
-\   (e = e1 @ e2 --> (? t1 . te |- e1 ===> t1->t2 & te |- e2 ===> t1))"; 
-by (elab_e_elim_tac prems);
-qed "elab_app_elim_lem";
-
-val prems = goal MT.thy 
-  "te |- e1 @ e2 ===> t2 ==> (? t1 . te |- e1 ===> t1->t2 & te |- e2 ===> t1)"; 
-by (cut_facts_tac prems 1);
-by (dtac elab_app_elim_lem 1);
-by (fast_tac prop_cs 1);
-qed "elab_app_elim";
-
-(* ############################################################ *)
-(* The extended correspondence relation                       *)
-(* ############################################################ *)
-
-(* Monotonicity of hasty_fun *)
-
-goalw MT.thy [mono_def,MT.hasty_fun_def] "mono(hasty_fun)";
-by infsys_mono_tac;
-bind_thm("mono_hasty_fun",  result());
-
-(* 
-  Because hasty_rel has been defined as the greatest fixpoint of hasty_fun it 
-  enjoys two strong indtroduction (co-induction) rules and an elimination rule.
-*)
-
-(* First strong indtroduction (co-induction) rule for hasty_rel *)
-
-val prems = goalw MT.thy [hasty_rel_def] "c isof t ==> <v_const(c),t> : hasty_rel";
-by (cut_facts_tac prems 1);
-by (rtac gfp_coind2 1);
-by (rewtac MT.hasty_fun_def);
-by (rtac CollectI 1);
-by (rtac disjI1 1);
-by (fast_tac HOL_cs 1);
-by (rtac mono_hasty_fun 1);
-qed "hasty_rel_const_coind";
-
-(* Second strong introduction (co-induction) rule for hasty_rel *)
-
-val prems = goalw MT.thy [hasty_rel_def]
-  " [|  te |- fn ev => e ===> t; \
-\       ve_dom(ve) = te_dom(te); \
-\       ! ev1. \
-\         ev1:ve_dom(ve) --> \
-\         <ve_app(ve,ev1),te_app(te,ev1)> : {<v_clos(<|ev,e,ve|>),t>} Un hasty_rel \
-\   |] ==> \
-\   <v_clos(<|ev,e,ve|>),t> : hasty_rel";
-by (cut_facts_tac prems 1);
-by (rtac gfp_coind2 1);
-by (rewtac hasty_fun_def);
-by (rtac CollectI 1);
-by (rtac disjI2 1);
-by (fast_tac HOL_cs 1);
-by (rtac mono_hasty_fun 1);
-qed "hasty_rel_clos_coind";
-
-(* Elimination rule for hasty_rel *)
-
-val prems = goalw MT.thy [hasty_rel_def]
-  " [| !! c t.c isof t ==> P(<v_const(c),t>); \
-\      !! te ev e t ve. \
-\        [| te |- fn ev => e ===> t; \
-\           ve_dom(ve) = te_dom(te); \
-\           !ev1.ev1:ve_dom(ve) --> <ve_app(ve,ev1),te_app(te,ev1)> : hasty_rel \
-\        |] ==> P(<v_clos(<|ev,e,ve|>),t>); \
-\      <v,t> : hasty_rel \
-\   |] ==> P(<v,t>)";
-by (cut_facts_tac prems 1);
-by (etac gfp_elim2 1);
-by (rtac mono_hasty_fun 1);
-by (rewtac hasty_fun_def);
-by (dtac CollectD 1);
-by (fold_goals_tac [hasty_fun_def]);
-by (safe_tac HOL_cs);
-by (ALLGOALS (resolve_tac prems));
-by (ALLGOALS (fast_tac set_cs));
-qed "hasty_rel_elim0";
-
-val prems = goal MT.thy 
-  " [| <v,t> : hasty_rel; \
-\      !! c t.c isof t ==> P(v_const(c),t); \
-\      !! te ev e t ve. \
-\        [| te |- fn ev => e ===> t; \
-\           ve_dom(ve) = te_dom(te); \
-\           !ev1.ev1:ve_dom(ve) --> <ve_app(ve,ev1),te_app(te,ev1)> : hasty_rel \
-\        |] ==> P(v_clos(<|ev,e,ve|>),t) \
-\   |] ==> P(v,t)";
-by (res_inst_tac [("P","P")] infsys_p2 1);
-by (rtac hasty_rel_elim0 1);
-by (ALLGOALS (rtac infsys_p1));
-by (ALLGOALS (resolve_tac prems));
-by (REPEAT ((assume_tac 1) ORELSE (dtac infsys_p2 1)));
-qed "hasty_rel_elim";
-
-(* Introduction rules for hasty *)
-
-val prems = goalw MT.thy [hasty_def] "c isof t ==> v_const(c) hasty t";
-by (resolve_tac (prems RL [hasty_rel_const_coind]) 1);
-qed "hasty_const";
-
-val prems = goalw MT.thy [hasty_def,hasty_env_def] 
-  "te |- fn ev => e ===> t & ve hastyenv te ==> v_clos(<|ev,e,ve|>) hasty t";
-by (cut_facts_tac prems 1);
-by (rtac hasty_rel_clos_coind 1);
-by (ALLGOALS (fast_tac set_cs));
-qed "hasty_clos";
-
-(* Elimination on constants for hasty *)
-
-val prems = goalw MT.thy [hasty_def] 
-  "v hasty t ==> (!c.(v = v_const(c) --> c isof t))";  
-by (cut_facts_tac prems 1);
-by (rtac hasty_rel_elim 1);
-by (ALLGOALS (fast_tac (v_ext_cs HOL_cs)));
-qed "hasty_elim_const_lem";
-
-val prems = goal MT.thy "v_const(c) hasty t ==> c isof t";
-by (cut_facts_tac (prems RL [hasty_elim_const_lem]) 1);
-by (fast_tac HOL_cs 1);
-qed "hasty_elim_const";
-
-(* Elimination on closures for hasty *)
-
-val prems = goalw MT.thy [hasty_env_def,hasty_def] 
-  " v hasty t ==> \
-\   ! x e ve. \
-\     v=v_clos(<|x,e,ve|>) --> (? te.te |- fn x => e ===> t & ve hastyenv te)";
-by (cut_facts_tac prems 1);
-by (rtac hasty_rel_elim 1);
-by (ALLGOALS (fast_tac (v_ext_cs HOL_cs)));
-qed "hasty_elim_clos_lem";
-
-val prems = goal MT.thy 
-  "v_clos(<|ev,e,ve|>) hasty t ==> ? te.te |- fn ev => e ===> t & ve hastyenv te ";
-by (cut_facts_tac (prems RL [hasty_elim_clos_lem]) 1);
-by (fast_tac HOL_cs 1);
-qed "hasty_elim_clos";
-
-(* ############################################################ *)
-(* The pointwise extension of hasty to environments             *)
-(* ############################################################ *)
-
-goal MT.thy
-  "!!ve. [| ve hastyenv te; v hasty t |] ==> \
-\        ve + {ev |-> v} hastyenv te + {ev |=> t}";
-by (rewtac hasty_env_def);
-by (asm_full_simp_tac (HOL_ss addsimps [ve_dom_owr, te_dom_owr]) 1);
-by (safe_tac HOL_cs);
-by (excluded_middle_tac "ev=x" 1);
-by (asm_full_simp_tac (HOL_ss addsimps [ve_app_owr2, te_app_owr2]) 1);
-by (fast_tac set_cs 1);
-by (asm_simp_tac (HOL_ss addsimps [ve_app_owr1, te_app_owr1]) 1);
-qed "hasty_env1";
-
-(* ############################################################ *)
-(* The Consistency theorem                                      *)
-(* ############################################################ *)
-
-val prems = goal MT.thy 
-  "[| ve hastyenv te ; te |- e_const(c) ===> t |] ==> v_const(c) hasty t";
-by (cut_facts_tac prems 1);
-by (dtac elab_const_elim 1);
-by (etac hasty_const 1);
-qed "consistency_const";
-
-val prems = goalw MT.thy [hasty_env_def]
-  " [| ev : ve_dom(ve); ve hastyenv te ; te |- e_var(ev) ===> t |] ==> \
-\   ve_app(ve,ev) hasty t";
-by (cut_facts_tac prems 1);
-by (dtac elab_var_elim 1);
-by (fast_tac HOL_cs 1);
-qed "consistency_var";
-
-val prems = goal MT.thy
-  " [| ve hastyenv te ; te |- fn ev => e ===> t |] ==> \
-\   v_clos(<| ev, e, ve |>) hasty t";
-by (cut_facts_tac prems 1);
-by (rtac hasty_clos 1);
-by (fast_tac prop_cs 1);
-qed "consistency_fn";
-
-val prems = goalw MT.thy [hasty_env_def,hasty_def]
-  " [| cl = <| ev1, e, ve + { ev2 |-> v_clos(cl) } |>; \
-\      ve hastyenv te ; \
-\      te |- fix ev2  ev1  = e ===> t \
-\   |] ==> \
-\   v_clos(cl) hasty t";
-by (cut_facts_tac prems 1);
-by (dtac elab_fix_elim 1);
-by (safe_tac HOL_cs);
-(*Do a single unfolding of cl*)
-by ((forward_tac [ssubst] 1) THEN (assume_tac 2));
-by (rtac hasty_rel_clos_coind 1);
-by (etac elab_fn 1);
-by (asm_simp_tac (HOL_ss addsimps [ve_dom_owr, te_dom_owr]) 1);
-
-by (asm_simp_tac (HOL_ss addsimps [ve_dom_owr]) 1);
-by (safe_tac HOL_cs);
-by (excluded_middle_tac "ev2=ev1a" 1);
-by (asm_full_simp_tac (HOL_ss addsimps [ve_app_owr2, te_app_owr2]) 1);
-by (fast_tac set_cs 1);
-
-by (asm_simp_tac (HOL_ss addsimps [ve_app_owr1, te_app_owr1]) 1);
-by (hyp_subst_tac 1);
-by (etac subst 1);
-by (fast_tac set_cs 1);
-qed "consistency_fix";
-
-val prems = goal MT.thy 
-  " [| ! t te. ve hastyenv te  --> te |- e1 ===> t --> v_const(c1) hasty t; \
-\      ! t te. ve hastyenv te  --> te |- e2 ===> t --> v_const(c2) hasty t; \
-\      ve hastyenv te ; te |- e1 @ e2 ===> t \
-\   |] ==> \
-\   v_const(c_app(c1,c2)) hasty t";
-by (cut_facts_tac prems 1);
-by (dtac elab_app_elim 1);
-by (safe_tac HOL_cs);
-by (rtac hasty_const 1);
-by (rtac isof_app 1);
-by (rtac hasty_elim_const 1);
-by (fast_tac HOL_cs 1);
-by (rtac hasty_elim_const 1);
-by (fast_tac HOL_cs 1);
-qed "consistency_app1";
-
-val prems = goal MT.thy 
-  " [| ! t te. \
-\        ve hastyenv te  --> \
-\        te |- e1 ===> t --> v_clos(<|evm, em, vem|>) hasty t; \
-\      ! t te. ve hastyenv te  --> te |- e2 ===> t --> v2 hasty t; \
-\      ! t te. \
-\        vem + { evm |-> v2 } hastyenv te  --> te |- em ===> t --> v hasty t; \
-\      ve hastyenv te ; \
-\      te |- e1 @ e2 ===> t \
-\   |] ==> \
-\   v hasty t";
-by (cut_facts_tac prems 1);
-by (dtac elab_app_elim 1);
-by (safe_tac HOL_cs);
-by ((etac allE 1) THEN (etac allE 1) THEN (etac impE 1));
-by (assume_tac 1);
-by (etac impE 1);
-by (assume_tac 1);
-by ((etac allE 1) THEN (etac allE 1) THEN (etac impE 1));
-by (assume_tac 1);
-by (etac impE 1);
-by (assume_tac 1);
-by (dtac hasty_elim_clos 1);
-by (safe_tac HOL_cs);
-by (dtac elab_fn_elim 1);
-by (safe_tac HOL_cs);
-by (dtac t_fun_inj 1);
-by (safe_tac prop_cs);
-by ((dtac hasty_env1 1) THEN (assume_tac 1) THEN (fast_tac HOL_cs 1));
-qed "consistency_app2";
-
-val [major] = goal MT.thy 
-  "ve |- e ---> v ==> \
-\  (! t te. ve hastyenv te --> te |- e ===> t --> v hasty t)";
-
-(* Proof by induction on the structure of evaluations *)
-
-by (rtac (major RS eval_ind) 1);
-by (safe_tac HOL_cs);
-by (DEPTH_SOLVE 
-    (ares_tac [consistency_const, consistency_var, consistency_fn,
-	       consistency_fix, consistency_app1, consistency_app2] 1));
-qed "consistency";
-
-(* ############################################################ *)
-(* The Basic Consistency theorem                                *)
-(* ############################################################ *)
-
-val prems = goalw MT.thy [isof_env_def,hasty_env_def] 
-  "ve isofenv te ==> ve hastyenv te";
-by (cut_facts_tac prems 1);
-by (safe_tac HOL_cs);
-by (etac allE 1);
-by (etac impE 1);
-by (assume_tac 1);
-by (etac exE 1);
-by (etac conjE 1);
-by (dtac hasty_const 1);
-by (asm_simp_tac HOL_ss 1);
-qed "basic_consistency_lem";
-
-val prems = goal MT.thy
-  "[| ve isofenv te; ve |- e ---> v_const(c); te |- e ===> t |] ==> c isof t";
-by (cut_facts_tac prems 1);
-by (rtac hasty_elim_const 1);
-by (dtac consistency 1);
-by (fast_tac (HOL_cs addSIs [basic_consistency_lem]) 1);
-qed "basic_consistency";
-
-