ex/Simult.thy
changeset 252 a4dc62a46ee4
parent 251 f04b33ce250f
child 253 132634d24019
--- a/ex/Simult.thy	Tue Oct 24 14:59:17 1995 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,82 +0,0 @@
-(*  Title: 	HOL/ex/Simult
-    ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1993  University of Cambridge
-
-A simultaneous recursive type definition: trees & forests
-
-This is essentially the same data structure that on ex/term.ML, which is
-simpler because it uses list as a new type former.  The approach in this
-file may be superior for other simultaneous recursions.
-
-The inductive definition package does not help defining this sort of mutually
-recursive data structure because it uses Inl, Inr instead of In0, In1.
-*)
-
-Simult = SList +
-
-types    'a tree
-         'a forest
-
-arities  tree,forest :: (term)term
-
-consts
-  TF          :: "'a item set => 'a item set"
-  FNIL        :: "'a item"
-  TCONS,FCONS :: "['a item, 'a item] => 'a item"
-  Rep_Tree    :: "'a tree => 'a item"
-  Abs_Tree    :: "'a item => 'a tree"
-  Rep_Forest  :: "'a forest => 'a item"
-  Abs_Forest  :: "'a item => 'a forest"
-  Tcons       :: "['a, 'a forest] => 'a tree"
-  Fcons       :: "['a tree, 'a forest] => 'a forest"
-  Fnil        :: "'a forest"
-  TF_rec      :: "['a item, ['a item , 'a item, 'b]=>'b,     
-                 'b, ['a item , 'a item, 'b, 'b]=>'b] => 'b"
-  tree_rec    :: "['a tree, ['a, 'a forest, 'b]=>'b,          
-                 'b, ['a tree, 'a forest, 'b, 'b]=>'b] => 'b"
-  forest_rec  :: "['a forest, ['a, 'a forest, 'b]=>'b,        
-                  'b, ['a tree, 'a forest, 'b, 'b]=>'b] => 'b"
-
-defs
-     (*the concrete constants*)
-  TCONS_def 	"TCONS(M,N) == In0(M $ N)"
-  FNIL_def	"FNIL       == In1(NIL)"
-  FCONS_def	"FCONS(M,N) == In1(CONS(M,N))"
-     (*the abstract constants*)
-  Tcons_def 	"Tcons(a,ts) == Abs_Tree(TCONS(Leaf(a), Rep_Forest(ts)))"
-  Fnil_def  	"Fnil        == Abs_Forest(FNIL)"
-  Fcons_def 	"Fcons(t,ts) == Abs_Forest(FCONS(Rep_Tree(t), Rep_Forest(ts)))"
-
-  TF_def	"TF(A) == lfp(%Z. A <*> Part(Z,In1) 
-                           <+> ({Numb(0)} <+> Part(Z,In0) <*> Part(Z,In1)))"
-
-rules
-  (*faking a type definition for tree...*)
-  Rep_Tree 	   "Rep_Tree(n): Part(TF(range(Leaf)),In0)"
-  Rep_Tree_inverse "Abs_Tree(Rep_Tree(t)) = t"
-  Abs_Tree_inverse "z: Part(TF(range(Leaf)),In0) ==> Rep_Tree(Abs_Tree(z)) = z"
-    (*faking a type definition for forest...*)
-  Rep_Forest 	     "Rep_Forest(n): Part(TF(range(Leaf)),In1)"
-  Rep_Forest_inverse "Abs_Forest(Rep_Forest(ts)) = ts"
-  Abs_Forest_inverse 
-	"z: Part(TF(range(Leaf)),In1) ==> Rep_Forest(Abs_Forest(z)) = z"
-
-
-defs
-     (*recursion*)
-  TF_rec_def	
-   "TF_rec(M,b,c,d) == wfrec(trancl(pred_sexp), M, 			
-               Case(Split(%x y g. b(x,y,g(y))),		
-	              List_case(%g.c, %x y g. d(x,y,g(x),g(y)))))"
-
-  tree_rec_def
-   "tree_rec(t,b,c,d) == 
-   TF_rec(Rep_Tree(t), %x y r. b(Inv(Leaf,x), Abs_Forest(y), r), 
-          c, %x y rt rf. d(Abs_Tree(x), Abs_Forest(y), rt, rf))"
-
-  forest_rec_def
-   "forest_rec(tf,b,c,d) == 
-   TF_rec(Rep_Forest(tf), %x y r. b(Inv(Leaf,x), Abs_Forest(y), r), 
-          c, %x y rt rf. d(Abs_Tree(x), Abs_Forest(y), rt, rf))"
-end