mono.ML
changeset 252 a4dc62a46ee4
parent 251 f04b33ce250f
child 253 132634d24019
--- a/mono.ML	Tue Oct 24 14:59:17 1995 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,123 +0,0 @@
-(*  Title: 	HOL/mono
-    ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1991  University of Cambridge
-
-Monotonicity of various operations
-*)
-
-goal Set.thy "!!A B. A<=B ==> f``A <= f``B";
-by (fast_tac set_cs 1);
-qed "image_mono";
-
-goal Set.thy "!!A B. A<=B ==> Pow(A) <= Pow(B)";
-by (fast_tac set_cs 1);
-qed "Pow_mono";
-
-goal Set.thy "!!A B. A<=B ==> Union(A) <= Union(B)";
-by (fast_tac set_cs 1);
-qed "Union_mono";
-
-goal Set.thy "!!A B. B<=A ==> Inter(A) <= Inter(B)";
-by (fast_tac set_cs 1);
-qed "Inter_anti_mono";
-
-val prems = goal Set.thy
-    "[| A<=B;  !!x. x:A ==> f(x)<=g(x) |] ==> \
-\    (UN x:A. f(x)) <= (UN x:B. g(x))";
-by (fast_tac (set_cs addIs (prems RL [subsetD])) 1);
-qed "UN_mono";
-
-val [prem] = goal Set.thy
-    "[| !!x. f(x)<=g(x) |] ==> (UN x. f(x)) <= (UN x. g(x))";
-by (fast_tac (set_cs addIs [prem RS subsetD]) 1);
-qed "UN1_mono";
-
-val prems = goal Set.thy
-    "[| B<=A;  !!x. x:A ==> f(x)<=g(x) |] ==> \
-\    (INT x:A. f(x)) <= (INT x:A. g(x))";
-by (fast_tac (set_cs addIs (prems RL [subsetD])) 1);
-qed "INT_anti_mono";
-
-(*The inclusion is POSITIVE! *)
-val [prem] = goal Set.thy
-    "[| !!x. f(x)<=g(x) |] ==> (INT x. f(x)) <= (INT x. g(x))";
-by (fast_tac (set_cs addIs [prem RS subsetD]) 1);
-qed "INT1_mono";
-
-goal Set.thy "!!A B. [| A<=C;  B<=D |] ==> A Un B <= C Un D";
-by (fast_tac set_cs 1);
-qed "Un_mono";
-
-goal Set.thy "!!A B. [| A<=C;  B<=D |] ==> A Int B <= C Int D";
-by (fast_tac set_cs 1);
-qed "Int_mono";
-
-goal Set.thy "!!A::'a set. [| A<=C;  D<=B |] ==> A-B <= C-D";
-by (fast_tac set_cs 1);
-qed "Diff_mono";
-
-goal Set.thy "!!A B. A<=B ==> Compl(B) <= Compl(A)";
-by (fast_tac set_cs 1);
-qed "Compl_anti_mono";
-
-val prems = goal Prod.thy
-    "[| A<=C;  !!x. x:A ==> B<=D |] ==> Sigma(A,%x.B) <= Sigma(C,%x.D)";
-by (cut_facts_tac prems 1);
-by (fast_tac (set_cs addIs (prems RL [subsetD]) 
-                     addSIs [SigmaI] 
-                     addSEs [SigmaE]) 1);
-qed "Sigma_mono";
-
-
-(** Monotonicity of implications.  For inductive definitions **)
-
-goal Set.thy "!!A B x. A<=B ==> x:A --> x:B";
-by (rtac impI 1);
-by (etac subsetD 1);
-by (assume_tac 1);
-qed "in_mono";
-
-goal HOL.thy "!!P1 P2 Q1 Q2. [| P1-->Q1; P2-->Q2 |] ==> (P1&P2) --> (Q1&Q2)";
-by (fast_tac HOL_cs 1);
-qed "conj_mono";
-
-goal HOL.thy "!!P1 P2 Q1 Q2. [| P1-->Q1; P2-->Q2 |] ==> (P1|P2) --> (Q1|Q2)";
-by (fast_tac HOL_cs 1);
-qed "disj_mono";
-
-goal HOL.thy "!!P1 P2 Q1 Q2.[| Q1-->P1; P2-->Q2 |] ==> (P1-->P2)-->(Q1-->Q2)";
-by (fast_tac HOL_cs 1);
-qed "imp_mono";
-
-goal HOL.thy "P-->P";
-by (rtac impI 1);
-by (assume_tac 1);
-qed "imp_refl";
-
-val [PQimp] = goal HOL.thy
-    "[| !!x. P(x) --> Q(x) |] ==> (EX x.P(x)) --> (EX x.Q(x))";
-by (fast_tac (HOL_cs addIs [PQimp RS mp]) 1);
-qed "ex_mono";
-
-val [PQimp] = goal HOL.thy
-    "[| !!x. P(x) --> Q(x) |] ==> (ALL x.P(x)) --> (ALL x.Q(x))";
-by (fast_tac (HOL_cs addIs [PQimp RS mp]) 1);
-qed "all_mono";
-
-val [PQimp] = goal Set.thy
-    "[| !!x. P(x) --> Q(x) |] ==> Collect(P) <= Collect(Q)";
-by (fast_tac (set_cs addIs [PQimp RS mp]) 1);
-qed "Collect_mono";
-
-(*Used in indrule.ML*)
-val [subs,PQimp] = goal Set.thy
-    "[| A<=B;  !!x. x:A ==> P(x) --> Q(x) \
-\    |] ==> A Int Collect(P) <= B Int Collect(Q)";
-by (fast_tac (set_cs addIs [subs RS subsetD, PQimp RS mp]) 1);
-qed "Int_Collect_mono";
-
-(*Used in intr_elim.ML and in individual datatype definitions*)
-val basic_monos = [subset_refl, imp_refl, disj_mono, conj_mono, 
-		   ex_mono, Collect_mono, Part_mono, in_mono];
-