--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/ex/PropLog.thy Tue Aug 30 10:05:46 1994 +0200
@@ -0,0 +1,61 @@
+(* Title: HOL/ex/pl.thy
+ ID: $Id$
+ Author: Tobias Nipkow
+ Copyright 1994 TU Muenchen
+
+Inductive definition of propositional logic.
+*)
+
+PropLog = Finite +
+datatype
+ 'a pl = false | var ('a) ("#_" [1000]) | "->" ('a pl,'a pl) (infixr 90)
+consts
+ thms :: "'a pl set => 'a pl set"
+ "|-" :: "['a pl set, 'a pl] => bool" (infixl 50)
+ "|=" :: "['a pl set, 'a pl] => bool" (infixl 50)
+ eval2 :: "['a pl, 'a set] => bool"
+ eval :: "['a set, 'a pl] => bool" ("_[_]" [100,0] 100)
+ hyps :: "['a pl, 'a set] => 'a pl set"
+
+translations
+ "H |- p" == "p : thms(H)"
+
+inductive "thms(H)"
+ intrs
+ H "p:H ==> H |- p"
+ K "H |- p->q->p"
+ S "H |- (p->q->r) -> (p->q) -> p->r"
+ DN "H |- ((p->false) -> false) -> p"
+ MP "[| H |- p->q; H |- p |] ==> H |- q"
+
+rules
+
+ (** Proof theory for propositional logic
+
+ axK_def "axK == {x . ? p q. x = p->q->p}"
+ axS_def "axS == {x . ? p q r. x = (p->q->r) -> (p->q) -> p->r}"
+ axDN_def "axDN == {x . ? p. x = ((p->false) -> false) -> p}"
+
+ (*the use of subsets simplifies the proof of monotonicity*)
+ ruleMP_def "ruleMP(X) == {q. ? p:X. p->q : X}"
+
+ thms_def
+ "thms(H) == lfp(%X. H Un axK Un axS Un axDN Un ruleMP(X))"
+
+ conseq_def "H |- p == p : thms(H)"
+**)
+ sat_def "H |= p == (!tt. (!q:H. tt[q]) --> tt[p])"
+
+ eval_def "tt[p] == eval2(p,tt)"
+
+primrec eval2 pl
+ eval2_false "eval2(false) = (%x.False)"
+ eval2_var "eval2(#v) = (%tt.v:tt)"
+ eval2_imp "eval2(p->q) = (%tt.eval2(p,tt)-->eval2(q,tt))"
+
+primrec hyps pl
+ hyps_false "hyps(false) = (%tt.{})"
+ hyps_var "hyps(#v) = (%tt.{if(v:tt, #v, #v->false)})"
+ hyps_imp "hyps(p->q) = (%tt.hyps(p,tt) Un hyps(q,tt))"
+
+end