Integ/Equiv.thy
author lcp
Mon, 27 Feb 1995 16:36:17 +0100
changeset 216 12943ab62cc5
child 249 492493334e0f
permissions -rw-r--r--
Installation of Integ (ported from ZF by Mattolini)

(*  Title: 	Equiv.thy
    ID:         $Id$
    Authors: 	Riccardo Mattolini, Dip. Sistemi e Informatica
        	Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1994 Universita' di Firenze
    Copyright   1993  University of Cambridge

Equivalence relations in Higher-Order Set Theory 
*)

Equiv = Relation +
consts
    refl,equiv 	::      "['a set,('a*'a) set]=>bool"
    sym         ::      "('a*'a) set=>bool"
    "'/"        ::      "['a set,('a*'a) set]=>'a set set"  (infixl 90) 
                        (*set of equiv classes*)
    congruent	::	"[('a*'a) set,'a=>'b]=>bool"
    congruent2  ::      "[('a*'a) set,['a,'a]=>'b]=>bool"

defs
    refl_def      "refl(A,r) == r <= Sigma(A,%x.A) & (ALL x: A. <x,x> : r)"
    sym_def       "sym(r)    == ALL x y. <x,y>: r --> <y,x>: r"
    equiv_def     "equiv(A,r) == refl(A,r) & sym(r) & trans(r)"
    quotient_def  "A/r == UN x:A. {r^^{x}}"  
    congruent_def   "congruent(r,b)  == ALL y z. <y,z>:r --> b(y)=b(z)"
    congruent2_def  "congruent2(r,b) == ALL y1 z1 y2 z2. \
\           <y1,z1>:r --> <y2,z2>:r --> b(y1,y2) = b(z1,z2)"
end