(* Title: Substitutions/setplus.ML
Author: Martin Coen, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
For setplus.thy.
Properties of subsets and empty sets.
*)
open Setplus;
(*********)
(*** Rules for subsets ***)
goal Set.thy "A <= B = (! t.t:A --> t:B)";
by (fast_tac set_cs 1);
val subset_iff = result();
goalw Setplus.thy [ssubset_def] "A < B = ((A <= B) & ~(A=B))";
by (rtac refl 1);
val ssubset_iff = result();
goal Setplus.thy "(A::'a set <= B) = ((A < B) | (A=B))";
by (simp_tac (set_ss addsimps [ssubset_iff]) 1);
by (fast_tac set_cs 1);
val subseteq_iff_subset_eq = result();
(*Rule in Modus Ponens style*)
goal Setplus.thy "A < B --> c:A --> c:B";
by (simp_tac (set_ss addsimps [ssubset_iff]) 1);
by (fast_tac set_cs 1);
val ssubsetD = result();
(*********)
goalw Setplus.thy [empty_def] "~ a : {}";
by (fast_tac set_cs 1);
val not_in_empty = result();
goalw Setplus.thy [empty_def] "(A = {}) = (ALL a.~ a:A)";
by (fast_tac (set_cs addIs [set_ext]) 1);
val empty_iff = result();
(*********)
goal Set.thy "(~A=B) = ((? x.x:A & ~x:B) | (? x.~x:A & x:B))";
by (fast_tac (set_cs addIs [set_ext]) 1);
val not_equal_iff = result();
(*********)
val setplus_rews = [ssubset_iff,not_in_empty,empty_iff];
(*********)
(*Case analysis for rewriting; P also gets rewritten*)
val [prem1,prem2] = goal HOL.thy "[| P-->Q; ~P-->Q |] ==> Q";
by (rtac (excluded_middle RS disjE) 1);
by (etac (prem2 RS mp) 1);
by (etac (prem1 RS mp) 1);
val imp_excluded_middle = result();
fun imp_excluded_middle_tac s = res_inst_tac [("P",s)] imp_excluded_middle;