(* Title: HOL/ex/prop-log.ML
ID: $Id$
Author: Tobias Nipkow & Lawrence C Paulson
Copyright 1993 TU Muenchen & University of Cambridge
For ex/prop-log.thy. Inductive definition of propositional logic.
Soundness and completeness w.r.t. truth-tables.
Prove: If H|=p then G|=p where G:Fin(H)
*)
open PL;
val rule_defs = [axK_def, axS_def, axDN_def, ruleMP_def];
(** Monotonicity and unfolding of the function **)
goalw PL.thy rule_defs "mono(%X. H Un axK Un axS Un axDN Un ruleMP(X))";
by (rtac monoI 1);
by(fast_tac set_cs 1);
val thms_bnd_mono = result();
goalw PL.thy [thms_def] "!!G H. G<=H ==> thms(G) <= thms(H)";
by (REPEAT (ares_tac [subset_refl, Un_mono, lfp_mono] 1));
val thms_mono = result();
(** Introduction rules for the consequence relation **)
(* thms(H) = H Int Un axK Un axS Un ruleMP(thms(H)) *)
val thms_unfold = thms_bnd_mono RS (thms_def RS def_lfp_Tarski);
(*Proof by hypothesis*)
val prems = goalw PL.thy [conseq_def] "p:H ==> H |- p";
by (rtac (thms_unfold RS ssubst) 1);
by (fast_tac (set_cs addSIs prems) 1);
val conseq_H = result();
(*Proof by axiom K*)
goalw PL.thy [conseq_def] "H |- p->q->p";
by (rtac (thms_unfold RS ssubst) 1);
by (rewtac axK_def);
by (fast_tac set_cs 1);
val conseq_K = result();
(*Proof by axiom S*)
goalw PL.thy [conseq_def] "H |- (p->q->r) -> (p->q) -> p -> r";
by (rtac (thms_unfold RS ssubst) 1);
by (rewtac axS_def);
by (fast_tac set_cs 1);
val conseq_S = result();
(*Proof by axiom DN (double negation) *)
goalw PL.thy [conseq_def] "H |- ((p->false) -> false) -> p";
by (rtac (thms_unfold RS ssubst) 1);
by (rewtac axDN_def);
by (fast_tac set_cs 1);
val conseq_DN = result();
(*Proof by rule MP (Modus Ponens) *)
val [prempq,premp] = goalw PL.thy [conseq_def]
"[| H |- p->q; H |- p |] ==> H |- q";
by (rtac (thms_unfold RS ssubst) 1);
by (rewtac ruleMP_def);
by (fast_tac (set_cs addSIs [premp,prempq]) 1);
val conseq_MP = result();
(*Rule is called I for Identity Combinator, not for Introduction*)
goal PL.thy "H |- p->p";
by (rtac (conseq_S RS conseq_MP RS conseq_MP) 1);
by (rtac conseq_K 2);
by (rtac conseq_K 1);
val conseq_I = result();
(** Weakening, left and right **)
(*This order of premises is convenient with RS*)
val prems = goalw PL.thy [conseq_def] "[| G<=H; G |- p |] ==> H |- p";
by (rtac (thms_mono RS subsetD) 1);
by (REPEAT (resolve_tac prems 1));
val weaken_left = result();
(* H |- p ==> insert(a,H) |- p *)
val weaken_left_insert = subset_insertI RS weaken_left;
val weaken_left_Un1 = Un_upper1 RS weaken_left;
val weaken_left_Un2 = Un_upper2 RS weaken_left;
val prems = goal PL.thy "H |- q ==> H |- p->q";
by (rtac (conseq_K RS conseq_MP) 1);
by (REPEAT (resolve_tac prems 1));
val weaken_right = result();
(** Rule induction for H|-p **)
(*Careful unfolding/folding to avoid a big expansion*)
val major::prems = goalw PL.thy [conseq_def]
"[| H |- a; \
\ !!x. x:H ==> P(x); \
\ !!x y. P(x->y->x); \
\ !!x y z. P((x->y->z)->(x->y)->x->z); \
\ !!x. P(((x->false)->false)->x); \
\ !!x y. [| H |- x->y; H |- x; P(x->y); P(x) |] ==> P(y) \
\ |] ==> P(a)";
by (rtac (major RS (thms_def RS def_induct)) 1);
by (rtac thms_bnd_mono 1);
by (rewrite_tac rule_defs);
by (fast_tac (set_cs addIs prems) 1);
val conseq_induct = result();
(*The deduction theorem*)
val [major] = goal PL.thy "insert(p,H) |- q ==> H |- p->q";
by (rtac (major RS conseq_induct) 1);
by (fast_tac (set_cs addIs [conseq_I, conseq_H RS weaken_right]) 1);
by (fast_tac (set_cs addIs [conseq_K RS weaken_right]) 1);
by (fast_tac (set_cs addIs [conseq_S RS weaken_right]) 1);
by (fast_tac (set_cs addIs [conseq_DN RS weaken_right]) 1);
by (fast_tac (set_cs addIs [conseq_S RS conseq_MP RS conseq_MP]) 1);
val deduction = result();
(*The cut rule*)
val prems = goal PL.thy "[| H|-p; insert(p,H) |- q |] ==> H |- q";
by (rtac (deduction RS conseq_MP) 1);
by (REPEAT (resolve_tac prems 1));
val cut = result();
val prems = goal PL.thy "H |- false ==> H |- p";
by (rtac (conseq_DN RS conseq_MP) 1);
by (rtac weaken_right 1);
by (resolve_tac prems 1);
val conseq_falseE = result();
(* [| H |- p->false; H |- p; q: pl |] ==> H |- q *)
val conseq_notE = standard (conseq_MP RS conseq_falseE);
(** The function eval **)
val pl_ss = set_ss addsimps [pl_rec_var,pl_rec_false,pl_rec_imp];
goalw PL.thy [eval_def] "tt[false] = False";
by (simp_tac pl_ss 1);
val eval_false = result();
goalw PL.thy [eval_def] "tt[#v] = (v:tt)";
by (simp_tac pl_ss 1);
val eval_var = result();
goalw PL.thy [eval_def] "tt[p->q] = (tt[p]-->tt[q])";
by (simp_tac pl_ss 1);
val eval_imp = result();
val pl_ss = pl_ss addsimps [eval_false, eval_var, eval_imp];
(** The function hyps **)
goalw PL.thy [hyps_def] "hyps(false,tt) = {}";
by (simp_tac pl_ss 1);
val hyps_false = result();
goalw PL.thy [hyps_def] "hyps(#v,tt) = {if(v:tt, #v, (#v)->false)}";
by (simp_tac pl_ss 1);
val hyps_var = result();
goalw PL.thy [hyps_def] "hyps(p->q,tt) = hyps(p,tt) Un hyps(q,tt)";
by (simp_tac pl_ss 1);
val hyps_imp = result();
val pl_ss = pl_ss addsimps [hyps_false, hyps_var, hyps_imp];
val ball_eq = prove_goalw Set.thy [Ball_def] "(!x:A.P(x)) = (!x.x:A --> P(x))"
(fn _ => [rtac refl 1]);
(*Soundness of the rules wrt truth-table semantics*)
val [major] = goalw PL.thy [sat_def] "H |- p ==> H |= p";
by (rtac (major RS conseq_induct) 1);
by (fast_tac (set_cs addSDs [eval_imp RS iffD1 RS mp]) 5);
by (ALLGOALS (asm_simp_tac(pl_ss addsimps
[ball_eq,not_def RS fun_cong RS sym])));
val soundness = result();
(** Structural induction on pl
val major::prems = goalw PL.thy pl_defs
"[| q: pl; \
\ P(false); \
\ !!v. v:nat ==> P(#v); \
\ !!q1 q2. [| q1: pl; q2: pl; P(q1); P(q2) |] ==> P(q1->q2) \
\ |] ==> P(q)";
by (rtac (major RS sexp_induct) 1);
by (etac nat_induct 1);
by (REPEAT (ares_tac prems 1));
val pl_induct = result();
**)
(*** Towards the completeness proof ***)
val [premf] = goal PL.thy "H |- p->false ==> H |- p->q";
by (rtac deduction 1);
by (rtac (premf RS weaken_left_insert RS conseq_notE) 1);
by (rtac conseq_H 1);
by (rtac insertI1 1);
val false_imp = result();
val [premp,premq] = goal PL.thy
"[| H |- p; H |- q->false |] ==> H |- (p->q)->false";
by (rtac deduction 1);
by (rtac (premq RS weaken_left_insert RS conseq_MP) 1);
by (rtac (conseq_H RS conseq_MP) 1);
by (rtac insertI1 1);
by (rtac (premp RS weaken_left_insert) 1);
val imp_false = result();
(*This formulation is required for strong induction hypotheses*)
goal PL.thy "hyps(p,tt) |- if(tt[p], p, p->false)";
by (rtac (expand_if RS iffD2) 1);
by(res_inst_tac[("x","p")]spec 1);
by (rtac pl_ind 1);
by (ALLGOALS (simp_tac (pl_ss addsimps [conseq_I, conseq_H])));
by (fast_tac (set_cs addIs [weaken_left_Un1, weaken_left_Un2,
weaken_right, imp_false]
addSEs [false_imp]) 1);
val hyps_conseq_if = result();
(*Key lemma for completeness; yields a set of assumptions satisfying p*)
val [sat] = goalw PL.thy [sat_def] "{} |= p ==> hyps(p,tt) |- p";
by (rtac (sat RS spec RS mp RS if_P RS subst) 1 THEN
rtac hyps_conseq_if 2);
by (fast_tac set_cs 1);
val sat_conseq_p = result();
(*For proving certain theorems in our new propositional logic*)
val conseq_cs =
set_cs addSIs [deduction] addIs [conseq_H, conseq_H RS conseq_MP];
(*The excluded middle in the form of an elimination rule*)
goal PL.thy "H |- (p->q) -> ((p->false)->q) -> q";
by (rtac (deduction RS deduction) 1);
by (rtac (conseq_DN RS conseq_MP) 1);
by (ALLGOALS (best_tac (conseq_cs addSIs prems)));
val conseq_excluded_middle = result();
(*Hard to prove directly because it requires cuts*)
val prems = goal PL.thy
"[| insert(p,H) |- q; insert(p->false,H) |- q |] ==> H |- q";
by (rtac (conseq_excluded_middle RS conseq_MP RS conseq_MP) 1);
by (REPEAT (resolve_tac (prems@[deduction]) 1));
val conseq_excluded_middle_rule = result();
(*** Completeness -- lemmas for reducing the set of assumptions ***)
(*For the case hyps(p,t)-insert(#v,Y) |- p;
we also have hyps(p,t)-{#v} <= hyps(p, t-{v}) *)
goal PL.thy "!p.hyps(p, t-{v}) <= insert((#v)->false, hyps(p,t)-{#v})";
by (rtac pl_ind 1);
by (simp_tac pl_ss 1);
by (simp_tac (pl_ss setloop (split_tac [expand_if])) 1);
by (fast_tac (set_cs addSEs [sym RS var_neq_imp] addSDs [var_inject]) 1);
by (simp_tac pl_ss 1);
by (fast_tac set_cs 1);
val hyps_Diff = result() RS spec;
(*For the case hyps(p,t)-insert(#v -> false,Y) |- p;
we also have hyps(p,t)-{(#v)->false} <= hyps(p, insert(v,t)) *)
goal PL.thy "!p.hyps(p, insert(v,t)) <= insert(#v, hyps(p,t)-{(#v)->false})";
by (rtac pl_ind 1);
by (simp_tac pl_ss 1);
by (simp_tac (pl_ss setloop (split_tac [expand_if])) 1);
by (fast_tac (set_cs addSEs [var_neq_imp, imp_inject] addSDs [var_inject]) 1);
by (simp_tac pl_ss 1);
by (fast_tac set_cs 1);
val hyps_insert = result() RS spec;
(** Two lemmas for use with weaken_left **)
goal Set.thy "B-C <= insert(a, B-insert(a,C))";
by (fast_tac set_cs 1);
val insert_Diff_same = result();
goal Set.thy "insert(a, B-{c}) - D <= insert(a, B-insert(c,D))";
by (fast_tac set_cs 1);
val insert_Diff_subset2 = result();
(*The set hyps(p,t) is finite, and elements have the form #v or #v->false;
could probably prove the stronger hyps(p,t) : Fin(hyps(p,{}) Un hyps(p,nat))*)
goal PL.thy "!p.hyps(p,t) : Fin(UN v:{x.True}. {#v, (#v)->false})";
by (rtac pl_ind 1);
by (ALLGOALS (simp_tac (pl_ss setloop (split_tac [expand_if])) THEN'
fast_tac (set_cs addSIs [Fin_0I, Fin_insertI, Fin_UnI])));
val hyps_finite = result() RS spec;
val Diff_weaken_left = subset_refl RSN (2, Diff_mono) RS weaken_left;
(*Induction on the finite set of assumptions hyps(p,t0).
We may repeatedly subtract assumptions until none are left!*)
val [sat] = goal PL.thy
"{} |= p ==> !t. hyps(p,t) - hyps(p,t0) |- p";
by (rtac (hyps_finite RS Fin_induct) 1);
by (simp_tac (pl_ss addsimps [sat RS sat_conseq_p]) 1);
by (safe_tac set_cs);
(*Case hyps(p,t)-insert(#v,Y) |- p *)
by (rtac conseq_excluded_middle_rule 1);
by (rtac (insert_Diff_same RS weaken_left) 1);
by (etac spec 1);
by (rtac (insert_Diff_subset2 RS weaken_left) 1);
by (rtac (hyps_Diff RS Diff_weaken_left) 1);
by (etac spec 1);
(*Case hyps(p,t)-insert(#v -> false,Y) |- p *)
by (rtac conseq_excluded_middle_rule 1);
by (rtac (insert_Diff_same RS weaken_left) 2);
by (etac spec 2);
by (rtac (insert_Diff_subset2 RS weaken_left) 1);
by (rtac (hyps_insert RS Diff_weaken_left) 1);
by (etac spec 1);
val completeness_0_lemma = result();
(*The base case for completeness*)
val [sat] = goal PL.thy "{} |= p ==> {} |- p";
by (rtac (Diff_cancel RS subst) 1);
by (rtac (sat RS (completeness_0_lemma RS spec)) 1);
val completeness_0 = result();
(*A semantic analogue of the Deduction Theorem*)
val [sat] = goalw PL.thy [sat_def] "insert(p,H) |= q ==> H |= p->q";
by (simp_tac pl_ss 1);
by (cfast_tac [sat] 1);
val sat_imp = result();
val [finite] = goal PL.thy "H: Fin({p.True}) ==> !p. H |= p --> H |- p";
by (rtac (finite RS Fin_induct) 1);
by (safe_tac (set_cs addSIs [completeness_0]));
by (rtac (weaken_left_insert RS conseq_MP) 1);
by (fast_tac (set_cs addSIs [sat_imp]) 1);
by (fast_tac conseq_cs 1);
val completeness_lemma = result();
val completeness = completeness_lemma RS spec RS mp;
val [finite] = goal PL.thy "H: Fin({p.True}) ==> (H |- p) = (H |= p)";
by (fast_tac (set_cs addSEs [soundness, finite RS completeness]) 1);
val conseq_iff = result();
writeln"Reached end of file.";