Sum.thy
author clasohm
Tue, 09 Nov 1993 13:30:13 +0100
changeset 15 25ec61ee621c
parent 0 7949f97df77a
child 38 7ef6ba42914b
permissions -rw-r--r--
renamed meson-test.ML to mesontest.ML, used exact theory names for use_thy

(*  Title: 	HOL/sum
    ID:         $Id$
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1992  University of Cambridge

The disjoint sum of two types
*)

Sum = Prod +
types   "+" 2      (infixl 10)
arities "+"     :: (term,term)term
consts
   Inl_Rep	:: "['a,'a,'b,bool] => bool"
   Inr_Rep	:: "['b,'a,'b,bool] => bool"
   Sum		:: "(['a,'b,bool] => bool)set"
   Rep_Sum	:: "'a + 'b => (['a,'b,bool] => bool)"
   Abs_Sum	:: "(['a,'b,bool] => bool) => 'a+'b"
   Inl		:: "'a => 'a+'b"
   Inr		:: "'b => 'a+'b"
   case		:: "['a+'b, 'a=>'c,'b=>'c] =>'c"
rules
  Inl_Rep_def	"Inl_Rep == (%a. %x y p. x=a & p)"
  Inr_Rep_def	"Inr_Rep == (%b. %x y p. y=b & ~p)"
  Sum_def "Sum == {f. (? a. f = Inl_Rep(a)) | (? b. f = Inr_Rep(b))}"
    (*faking a type definition...*)
  Rep_Sum 		"Rep_Sum(s): Sum"
  Rep_Sum_inverse 	"Abs_Sum(Rep_Sum(s)) = s"
  Abs_Sum_inverse 	"f: Sum ==> Rep_Sum(Abs_Sum(f)) = f"
    (*defining the abstract constants*)
  Inl_def  		"Inl == (%a. Abs_Sum(Inl_Rep(a)))"
  Inr_def 		"Inr == (%b. Abs_Sum(Inr_Rep(b)))"
  case_def	"case == (%p f g. @z.  (!x. p=Inl(x) --> z=f(x))\
\                                    & (!y. p=Inr(y) --> z=g(y)))"
end