Finite.thy
author lcp
Thu, 25 Aug 1994 11:01:45 +0200
changeset 128 89669c58e506
permissions -rw-r--r--
INSTALLATION OF INDUCTIVE DEFINITIONS HOL/Sexp, List, LList: updated for inductive defs; streamlined proofs HOL/List, Subst/UTerm, ex/Simult, ex/Term: updated refs to Sexp intr rules HOL/Univ/diag_eqI: new HOL/intr_elim: now checks that the inductive name does not clash with existing theory names HOL/Sum: now type + is an infixr, to agree with type * HOL/Set: added Pow and the derived rules PowI, PowD, Pow_bottom, Pow_top HOL/Fun/set_cs: now includes Pow rules HOL/mono/Pow_mono: new HOL/Makefile: now has Inductive.thy,.ML and ex/Acc.thy,.ML HOL/Sexp,List,LList,ex/Term: converted as follows node *set -> item Sexp -> sexp LList_corec -> <self> LList_ -> llist_ LList\> -> llist List_case -> <self> List_rec -> <self> List_ -> list_ List\> -> list Term_rec -> <self> Term_ -> term_ Term\> -> term

(*  Title: 	HOL/Finite.thy
    ID:         $Id$
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1994  University of Cambridge

Finite powerset operator
*)

Finite = Lfp +
consts Fin :: "'a set => 'a set set"

inductive "Fin(A)"
  intrs
    emptyI  "{} : Fin(A)"
    insertI "[| a: A;  b: Fin(A) |] ==> insert(a,b) : Fin(A)"

end