(* Title: HOL/Datatype
ID: $Id$
Author: Max Breitling, Carsten Clasohm,
Tobias Nipkow, Norbert Voelker
Copyright 1994 TU Muenchen
*)
(*choice between Ci_neg1 and Ci_neg2 axioms depends on number of constructors*)
local
val dtK = 5
in
local open ThyParse in
val datatype_decls =
let
val tvar = type_var >> (fn s => "dtVar" ^ s);
val type_var_list =
tvar >> (fn s => [s]) || "(" $$-- list1 tvar --$$ ")";
val typ =
ident >> (fn s => "dtTyp([]," ^ quote s ^")")
||
type_var_list -- ident >> (fn (ts, id) => "dtTyp(" ^ mk_list ts ^
"," ^ quote id ^ ")")
||
tvar;
val typ_list = "(" $$-- list1 typ --$$ ")" || empty;
val cons = name -- typ_list -- opt_mixfix;
fun constructs ts =
( cons --$$ "|" -- constructs >> op::
||
cons >> (fn c => [c])) ts;
fun mk_cons cs =
case findrep (map (fst o fst) cs) of
[] => map (fn ((s,ts),syn) => parens(commas [s,mk_list ts,syn])) cs
| c::_ => error("Constructor \"" ^ c ^ "\" occurs twice");
(*remove all quotes from a string*)
val rem_quotes = implode o filter (fn c => c <> "\"") o explode;
(*generate names of distinct axioms*)
fun rules_distinct cs tname =
let val uqcs = map (fn ((s,_),_) => rem_quotes s) cs;
(*combine all constructor names with all others w/o duplicates*)
fun negOne c = map (fn c2 => quote (c ^ "_not_" ^ c2));
fun neg1 [] = []
| neg1 (c1 :: cs) = (negOne c1 cs) @ (neg1 cs)
in if length uqcs < dtK then neg1 uqcs
else quote (tname ^ "_ord_distinct") ::
map (fn c => quote (tname ^ "_ord_" ^ c)) uqcs
end;
fun rules tname cons pre =
" map (get_axiom thy) " ^
mk_list (map (fn ((s,_),_) => quote(tname ^ pre ^ rem_quotes s))
cons)
(*generate string for calling 'add_datatype'*)
fun mk_params ((ts, tname), cons) =
("val (thy," ^ tname ^ "_add_primrec) = add_datatype\n" ^
parens (commas [mk_list ts, quote tname, mk_list (mk_cons cons)]) ^
" thy\n\
\val thy=thy",
"structure " ^ tname ^ " =\n\
\struct\n\
\ val inject = map (get_axiom thy) " ^
mk_list (map (fn ((s,_), _) => quote ("inject_" ^ rem_quotes s))
(filter_out (null o snd o fst) cons)) ^ ";\n\
\ val distinct = " ^
(if length cons < dtK then "let val distinct' = " else "") ^
"map (get_axiom thy) " ^ mk_list (rules_distinct cons tname) ^
(if length cons < dtK then
" in distinct' @ (map (fn t => sym COMP (t RS contrapos))\
\ distinct') end"
else "") ^ ";\n\
\ val induct = get_axiom thy \"" ^ tname ^ "_induct\";\n\
\ val cases =" ^ rules tname cons "_case_" ^ ";\n\
\ val recs =" ^ rules tname cons "_rec_" ^ ";\n\
\ val simps = inject @ distinct @ cases @ recs;\n\
\ fun induct_tac a =\
\res_inst_tac[(" ^ quote tname ^ ", a)]induct;\n\
\end;\n")
in
(type_var_list || empty) -- ident --$$ "=" -- constructs >> mk_params
end
val primrec_decl =
let fun mkstrings((fname,tname),axms) =
let fun prove (name,eqn) =
"val "^name^"= prove_goalw thy [get_def thy "^fname^"] "^eqn^"\n\
\ (fn _ => [simp_tac (HOL_ss addsimps " ^ tname^".recs) 1])"
val axs = mk_list (map (fn (n,a) => mk_pair(quote n,a)) axms)
in ("|> " ^ tname^"_add_primrec " ^ axs, cat_lines(map prove axms))
end
in name -- long_id -- repeat1 (ident -- string) >> mkstrings end
end;
(*used for constructor parameters*)
datatype dt_type = dtVar of string |
dtTyp of dt_type list * string |
dtRek of dt_type list * string;
local
val mysort = sort;
open ThyParse
exception Impossible;
exception RecError of string;
val is_dtRek = (fn dtRek _ => true | _ => false);
fun opt_parens s = if s = "" then "" else enclose "(" ")" s;
(* ----------------------------------------------------------------------- *)
(* Derivation of the primrec combinator application from the equations *)
(* subst. applications fname(ls,xk,rs) by yk(ls,rs) for xk in rargs *)
fun subst_apps (_,_) [] t = t
| subst_apps (fname,cpos) pairs t =
let
fun subst (Abs(a,T,t)) = Abs(a,T,subst t)
| subst (funct $ body) =
let val (f,b) = strip_comb (funct$body)
in
if is_Const f andalso fst(dest_Const f) = fname
then
let val (ls,rest) = (take(cpos,b), drop (cpos,b));
val (xk,rs) = (hd rest,tl rest)
handle LIST _ => raise RecError "not enough arguments \
\ in recursive application on rhs"
in
(case assoc (pairs,xk) of
None => raise RecError
("illegal occurence of " ^ fname ^ " on rhs")
| Some(U) => list_comb(U,ls @ rs))
end
else list_comb(f, map subst b)
end
| subst(t) = t
in subst t end;
(* abstract rhs *)
fun abst_rec (fname,cpos,tc,ls,cargs,rs,rhs) =
let val rargs = (map fst o
(filter (fn (a,T) => is_dtRek T))) (cargs ~~ tc);
val subs = map (fn (s,T) => (s,dummyT))
(rev(rename_wrt_term rhs rargs));
val subst_rhs = subst_apps (fname,cpos)
(map Free rargs ~~ map Free subs) rhs;
val res = list_abs_free (cargs @ subs @ ls @ rs, subst_rhs);
in
if fname mem add_term_names (res,[])
then raise RecError ("illegal occurence of " ^ fname ^ " on rhs")
else res
end;
(* parsing the prim rec equations *)
fun dest_eq ( Const("Trueprop",_) $ (Const ("op =",_) $ lhs $ rhs))
= (lhs, rhs)
| dest_eq _ = raise RecError "not a proper equation";
fun dest_rec eq =
let val (lhs,rhs) = dest_eq eq;
val (name,args) = strip_comb lhs;
val (ls',rest) = take_prefix is_Free args;
val (middle,rs') = take_suffix is_Free rest;
val cpos = length ls';
val (c,cargs') = strip_comb (hd middle)
handle LIST "hd" => raise RecError "constructor missing";
val (ls,cargs,rs) = (map dest_Free ls', map dest_Free cargs'
, map dest_Free rs')
handle TERM ("dest_Free",_) =>
raise RecError "constructor has illegal argument in pattern";
in
if length middle > 1 then
raise RecError "more than one non-variable in pattern"
else if not(null(findrep (map fst (ls @ rs @ cargs)))) then
raise RecError "repeated variable name in pattern"
else (fst(dest_Const name) handle TERM _ =>
raise RecError "function is not declared as constant in theory"
,cpos,ls,fst( dest_Const c),cargs,rs,rhs)
end;
(* check function specified for all constructors and sort function terms *)
fun check_and_sort (n,its) =
if length its = n
then map snd (mysort (fn ((i : int,_),(j,_)) => i<j) its)
else raise error "Primrec definition error:\n\
\Please give an equation for every constructor";
(* translate rec equations into function arguments suitable for rec comb *)
(* theory parameter needed for printing error messages *)
fun trans_recs _ _ [] = error("No primrec equations.")
| trans_recs thy cs' (eq1::eqs) =
let val (name1,cpos1,ls1,_,_,_,_) = dest_rec eq1
handle RecError s =>
error("Primrec definition error: " ^ s ^ ":\n"
^ " " ^ Sign.string_of_term (sign_of thy) eq1);
val tcs = map (fn (_,c,T,_) => (c,T)) cs';
val cs = map fst tcs;
fun trans_recs' _ [] = []
| trans_recs' cis (eq::eqs) =
let val (name,cpos,ls,c,cargs,rs,rhs) = dest_rec eq;
val tc = assoc(tcs,c);
val i = (1 + find (c,cs)) handle LIST "find" => 0;
in
if name <> name1 then
raise RecError "function names inconsistent"
else if cpos <> cpos1 then
raise RecError "position of rec. argument inconsistent"
else if i = 0 then
raise RecError "illegal argument in pattern"
else if i mem cis then
raise RecError "constructor already occured as pattern "
else (i,abst_rec (name,cpos,the tc,ls,cargs,rs,rhs))
:: trans_recs' (i::cis) eqs
end
handle RecError s =>
error("Primrec definition error\n" ^ s ^ "\n"
^ " " ^ Sign.string_of_term (sign_of thy) eq);
in ( name1, ls1
, check_and_sort (length cs, trans_recs' [] (eq1::eqs)))
end ;
fun instantiate_types thy t =
let val sg = sign_of thy
val rsg = Sign.rep_sg sg
in fst(Type.infer_types(#tsig rsg, Sign.const_type sg, K None, K None,
TVar(("",0),[]), t))
end;
in
fun add_datatype (typevars, tname, cons_list') thy =
let (*search for free type variables and convert recursive *)
fun analyse_types (cons, typlist, syn) =
let fun analyse(t as dtVar v) =
if t mem typevars then t
else error ("Free type variable " ^ v ^ " on rhs.")
| analyse(dtTyp(typl,s)) =
if tname <> s then dtTyp(analyses typl, s)
else if typevars = typl then dtRek(typl, s)
else error (s ^ " used in different ways")
| analyse(dtRek _) = raise Impossible
and analyses ts = map analyse ts;
in (cons, Syntax.const_name cons syn, analyses typlist, syn)
end;
(*test if all elements are recursive, i.e. if the type is empty*)
fun non_empty (cs : ('a * 'b * dt_type list * 'c) list) =
not(forall (exists is_dtRek o #3) cs) orelse
error("Empty datatype not allowed!");
val cons_list = map analyse_types cons_list';
val dummy = non_empty cons_list;
val num_of_cons = length cons_list;
(* Auxiliary functions to construct argument and equation lists *)
(*generate 'var_n, ..., var_m'*)
fun Args(var, delim, n, m) =
space_implode delim (map (fn n => var^string_of_int(n)) (n upto m));
(*generate 'name_1', ..., 'name_n'*)
fun C_exp(name, n, var) =
if n > 0 then name ^ parens(Args(var, ",", 1, n)) else name;
(*generate 'x_n = y_n, ..., x_m = y_m'*)
fun Arg_eql(n,m) =
if n=m then "x" ^ string_of_int(n) ^ "=y" ^ string_of_int(n)
else "x" ^ string_of_int(n) ^ "=y" ^ string_of_int(n) ^ " & " ^
Arg_eql(n+1, m);
(*Pretty printers for type lists;
pp_typlist1: parentheses, pp_typlist2: brackets*)
fun pp_typ (dtVar s) = s
| pp_typ (dtTyp (typvars, id)) =
if null typvars then id else (pp_typlist1 typvars) ^ id
| pp_typ (dtRek (typvars, id)) = (pp_typlist1 typvars) ^ id
and
pp_typlist' ts = commas (map pp_typ ts)
and
pp_typlist1 ts = if null ts then "" else parens (pp_typlist' ts);
fun pp_typlist2 ts = if null ts then "" else brackets (pp_typlist' ts);
(* Generate syntax translation for case rules *)
fun calc_xrules c_nr y_nr ((_, name, typlist, _) :: cs) =
let val arity = length typlist;
val body = "z" ^ string_of_int(c_nr);
val args1 = if arity=0 then ""
else parens (Args ("y", ",", y_nr, y_nr+arity-1));
val args2 = if arity=0 then ""
else "% " ^ Args ("y", " ", y_nr, y_nr+arity-1)
^ ". ";
val (rest1,rest2) =
if null cs then ("","")
else let val (h1, h2) = calc_xrules (c_nr+1) (y_nr+arity) cs
in (" | " ^ h1, ", " ^ h2) end;
in (name ^ args1 ^ " => " ^ body ^ rest1, args2 ^ body ^ rest2) end
| calc_xrules _ _ [] = raise Impossible;
val xrules =
let val (first_part, scnd_part) = calc_xrules 1 1 cons_list
in [("logic", "case x of " ^ first_part) <->
("logic", tname ^ "_case(" ^ scnd_part ^ ", x)" )]
end;
(*type declarations for constructors*)
fun const_type (id, _, typlist, syn) =
(id,
(if null typlist then "" else pp_typlist2 typlist ^ " => ") ^
pp_typlist1 typevars ^ tname, syn);
fun assumpt (dtRek _ :: ts, v :: vs ,found) =
let val h = if found then ";P(" ^ v ^ ")" else "[| P(" ^ v ^ ")"
in h ^ (assumpt (ts, vs, true)) end
| assumpt (t :: ts, v :: vs, found) = assumpt (ts, vs, found)
| assumpt ([], [], found) = if found then "|] ==>" else ""
| assumpt _ = raise Impossible;
(*insert type with suggested name 'varname' into table*)
fun insert typ varname ((tri as (t, s, n)) :: xs) =
if typ = t then (t, s, n+1) :: xs
else tri :: (if varname = s then insert typ (varname ^ "'") xs
else insert typ varname xs)
| insert typ varname [] = [(typ, varname, 1)];
fun typid(dtRek(_,id)) = id
| typid(dtVar s) = implode (tl (explode s))
| typid(dtTyp(_,id)) = id;
val insert_types = foldl (fn (tab,typ) => insert typ (typid typ) tab);
fun update(dtRek _, s, v :: vs, (dtRek _) :: ts) = s :: vs
| update(t, s, v :: vs, t1 :: ts) =
if t=t1 then s :: vs else v :: (update (t, s, vs, ts))
| update _ = raise Impossible;
fun update_n (dtRek r1, s, v :: vs, (dtRek r2) :: ts, n) =
if r1 = r2 then (s ^ string_of_int n) ::
(update_n (dtRek r1, s, vs, ts, n+1))
else v :: (update_n (dtRek r1, s, vs, ts, n))
| update_n (t, s, v :: vs, t1 :: ts, n) =
if t = t1 then (s ^ string_of_int n) ::
(update_n (t, s, vs, ts, n+1))
else v :: (update_n (t, s, vs, ts, n))
| update_n (_,_,[],[],_) = []
| update_n _ = raise Impossible;
(*insert type variables into table*)
fun convert typs =
let fun conv(vars, (t, s, n)) =
if n=1 then update (t, s, vars, typs)
else update_n (t, s, vars, typs, 1)
in foldl conv
end;
fun empty_list n = replicate n "";
fun t_inducting ((_, name, typl, _) :: cs) =
let val tab = insert_types([],typl);
val arity = length typl;
val var_list = convert typl (empty_list arity,tab);
val h = if arity = 0 then " P(" ^ name ^ ")"
else " !!" ^ (space_implode " " var_list) ^ "." ^
(assumpt (typl, var_list, false)) ^ "P(" ^
name ^ "(" ^ (commas var_list) ^ "))";
val rest = t_inducting cs;
in if rest = "" then h else h ^ "; " ^ rest end
| t_inducting [] = "";
fun t_induct cl typ_name =
"[|" ^ t_inducting cl ^ "|] ==> P(" ^ typ_name ^ ")";
fun gen_typlist typevar f ((_, _, ts, _) :: cs) =
let val h = if (length ts) > 0
then pp_typlist2(f ts) ^ "=>"
else ""
in h ^ typevar ^ "," ^ (gen_typlist typevar f cs) end
| gen_typlist _ _ [] = "";
(* -------------------------------------------------------------------- *)
(* The case constant and rules *)
val t_case = tname ^ "_case";
fun case_rule n (id, name, ts, _) =
let val args = opt_parens(Args("x", ",", 1, length ts))
in (t_case ^ "_" ^ id,
t_case ^ "(" ^ Args("f", ",", 1, num_of_cons)
^ "," ^ name ^ args
^ ") = f" ^ string_of_int(n) ^ args)
end
fun case_rules n (c :: cs) = case_rule n c :: case_rules(n+1) cs
| case_rules _ [] = [];
val datatype_arity = length typevars;
val types = [(tname, datatype_arity, NoSyn)];
val arities =
let val term_list = replicate datatype_arity ["term"];
in [(tname, term_list, ["term"])]
end;
val datatype_name = pp_typlist1 typevars ^ tname;
val new_tvar_name = variant (map (fn dtVar s => s) typevars) "'z";
val case_const =
(t_case,
"[" ^ gen_typlist new_tvar_name I cons_list
^ pp_typlist1 typevars ^ tname ^ "] =>" ^ new_tvar_name,
NoSyn);
val rules_case = case_rules 1 cons_list;
(* -------------------------------------------------------------------- *)
(* The prim-rec combinator *)
val t_rec = tname ^ "_rec"
(* adding type variables for dtRek types to end of list of dt_types *)
fun add_reks ts =
ts @ map (fn _ => dtVar new_tvar_name) (filter is_dtRek ts);
(* positions of the dtRek types in a list of dt_types, starting from 1 *)
fun rek_pos ts =
map snd (filter (is_dtRek o fst) (ts ~~ (1 upto length ts)))
fun rec_rule n (id,name,ts,_) =
let val args = Args("x",",",1,length ts)
val fargs = Args("f",",",1,num_of_cons)
fun rarg i = "," ^ t_rec ^ parens(fargs ^ "," ^ "x" ^
string_of_int(i))
val rargs = implode (map rarg (rek_pos ts))
in
( t_rec ^ "_" ^ id
, t_rec ^ parens(fargs ^ "," ^ name ^ (opt_parens args)) ^ " = f"
^ string_of_int(n) ^ opt_parens (args ^ rargs))
end
fun rec_rules n (c::cs) = rec_rule n c :: rec_rules (n+1) cs
| rec_rules _ [] = [];
val rec_const =
(t_rec,
"[" ^ (gen_typlist new_tvar_name add_reks cons_list)
^ (pp_typlist1 typevars) ^ tname ^ "] =>" ^ new_tvar_name,
NoSyn);
val rules_rec = rec_rules 1 cons_list
(* -------------------------------------------------------------------- *)
val consts =
map const_type cons_list
@ (if num_of_cons < dtK then []
else [(tname ^ "_ord", datatype_name ^ "=>nat", NoSyn)])
@ [case_const,rec_const];
fun Ci_ing ((id, name, typlist, _) :: cs) =
let val arity = length typlist;
in if arity = 0 then Ci_ing cs
else ("inject_" ^ id,
"(" ^ C_exp(name,arity,"x") ^ "=" ^ C_exp(name,arity,"y")
^ ") = (" ^ Arg_eql (1, arity) ^ ")") :: (Ci_ing cs)
end
| Ci_ing [] = [];
fun Ci_negOne (id1, name1, tl1, _) (id2, name2, tl2, _) =
let val ax = C_exp(name1, length tl1, "x") ^ "~=" ^
C_exp(name2, length tl2, "y")
in (id1 ^ "_not_" ^ id2, ax)
end;
fun Ci_neg1 [] = []
| Ci_neg1 (c1::cs) = (map (Ci_negOne c1) cs) @ Ci_neg1 cs;
fun suc_expr n =
if n=0 then "0" else "Suc(" ^ suc_expr(n-1) ^ ")";
fun Ci_neg2() =
let val ord_t = tname ^ "_ord";
val cis = cons_list ~~ (0 upto (num_of_cons - 1))
fun Ci_neg2equals ((id, name, typlist, _), n) =
let val ax = ord_t ^ "(" ^ (C_exp(name, length typlist, "x"))
^ ") = " ^ (suc_expr n)
in (ord_t ^ "_" ^ id, ax) end
in (ord_t ^ "_distinct", ord_t^"(x) ~= "^ord_t^"(y) ==> x ~= y") ::
(map Ci_neg2equals cis)
end;
val rules_distinct = if num_of_cons < dtK then Ci_neg1 cons_list
else Ci_neg2();
val rules_inject = Ci_ing cons_list;
val rule_induct = (tname ^ "_induct", t_induct cons_list tname);
val rules = rule_induct ::
(rules_inject @ rules_distinct @ rules_case @ rules_rec);
fun add_primrec eqns thy =
let val rec_comb = Const(t_rec,dummyT)
val teqns = map (fn neq => snd(read_axm (sign_of thy) neq)) eqns
val (fname,ls,fns) = trans_recs thy cons_list teqns
val rhs =
list_abs_free
(ls @ [(tname,dummyT)]
,list_comb(rec_comb
, fns @ map Bound (0 ::(length ls downto 1))));
val sg = sign_of thy;
val (defname,def) = mk_defpair (Const(fname,dummyT),rhs)
val tdef as ( _ $ Const(_,T) $ _ ) = instantiate_types thy def;
val varT = Type.varifyT T;
val Some(ftyp) = Sign.const_type sg fname;
in
if Type.typ_instance (#tsig(Sign.rep_sg sg), ftyp, varT)
then add_defs_i [(defname,tdef)] thy
else error("Primrec definition error: \ntype of " ^ fname
^ " is not instance of type deduced from equations")
end;
in
(thy
|> add_types types
|> add_arities arities
|> add_consts consts
|> add_trrules xrules
|> add_axioms rules,add_primrec)
end
end
end;