ex/Simult.thy
author lcp
Thu, 13 Oct 1994 09:39:15 +0100
changeset 153 c0ff8f1ebc16
parent 127 d9527f97246e
child 195 df6b3bd14dcb
permissions -rw-r--r--
HOL/HOL.ML/selectI2: new rule for descriptions

(*  Title: 	HOL/ex/Simult
    ID:         $Id$
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1993  University of Cambridge

A simultaneous recursive type definition: trees & forests

This is essentially the same data structure that on ex/term.ML, which is
simpler because it uses list as a new type former.  The approach in this
file may be superior for other simultaneous recursions.

The inductive definition package does not help defining this sort of mutually
recursive data structure because it uses Inl, Inr instead of In0, In1.
*)

Simult = List +

types    'a tree
         'a forest

arities  tree,forest :: (term)term

consts
  TF          :: "'a item set => 'a item set"
  FNIL        :: "'a item"
  TCONS,FCONS :: "['a item, 'a item] => 'a item"
  Rep_Tree    :: "'a tree => 'a item"
  Abs_Tree    :: "'a item => 'a tree"
  Rep_Forest  :: "'a forest => 'a item"
  Abs_Forest  :: "'a item => 'a forest"
  Tcons       :: "['a, 'a forest] => 'a tree"
  Fcons       :: "['a tree, 'a forest] => 'a forest"
  Fnil        :: "'a forest"
  TF_rec      :: "['a item, ['a item , 'a item, 'b]=>'b,     \
\                 'b, ['a item , 'a item, 'b, 'b]=>'b] => 'b"
  tree_rec    :: "['a tree, ['a, 'a forest, 'b]=>'b,          \
\                 'b, ['a tree, 'a forest, 'b, 'b]=>'b] => 'b"
  forest_rec  :: "['a forest, ['a, 'a forest, 'b]=>'b,        \
\                  'b, ['a tree, 'a forest, 'b, 'b]=>'b] => 'b"

defs
     (*the concrete constants*)
  TCONS_def 	"TCONS(M,N) == In0(M $ N)"
  FNIL_def	"FNIL       == In1(NIL)"
  FCONS_def	"FCONS(M,N) == In1(CONS(M,N))"
     (*the abstract constants*)
  Tcons_def 	"Tcons(a,ts) == Abs_Tree(TCONS(Leaf(a), Rep_Forest(ts)))"
  Fnil_def  	"Fnil        == Abs_Forest(FNIL)"
  Fcons_def 	"Fcons(t,ts) == Abs_Forest(FCONS(Rep_Tree(t), Rep_Forest(ts)))"

  TF_def	"TF(A) == lfp(%Z. A <*> Part(Z,In1) \
\                           <+> ({Numb(0)} <+> Part(Z,In0) <*> Part(Z,In1)))"

rules
  (*faking a type definition for tree...*)
  Rep_Tree 	   "Rep_Tree(n): Part(TF(range(Leaf)),In0)"
  Rep_Tree_inverse "Abs_Tree(Rep_Tree(t)) = t"
  Abs_Tree_inverse "z: Part(TF(range(Leaf)),In0) ==> Rep_Tree(Abs_Tree(z)) = z"
    (*faking a type definition for forest...*)
  Rep_Forest 	     "Rep_Forest(n): Part(TF(range(Leaf)),In1)"
  Rep_Forest_inverse "Abs_Forest(Rep_Forest(ts)) = ts"
  Abs_Forest_inverse 
	"z: Part(TF(range(Leaf)),In1) ==> Rep_Forest(Abs_Forest(z)) = z"


defs
     (*recursion*)
  TF_rec_def	
   "TF_rec(M,b,c,d) == wfrec(trancl(pred_sexp), M, 			\
\               Case(Split(%x y g. b(x,y,g(y))),		\
\	              List_case(%g.c, %x y g. d(x,y,g(x),g(y)))))"

  tree_rec_def
   "tree_rec(t,b,c,d) == \
\   TF_rec(Rep_Tree(t), %x y r. b(Inv(Leaf,x), Abs_Forest(y), r), \
\          c, %x y rt rf. d(Abs_Tree(x), Abs_Forest(y), rt, rf))"

  forest_rec_def
   "forest_rec(tf,b,c,d) == \
\   TF_rec(Rep_Forest(tf), %x y r. b(Inv(Leaf,x), Abs_Forest(y), r), \
\          c, %x y rt rf. d(Abs_Tree(x), Abs_Forest(y), rt, rf))"
end