Ord.thy
author lcp
Thu, 25 Aug 1994 10:47:33 +0200
changeset 127 d9527f97246e
parent 118 5b96b1252cdc
child 145 a9f7ff3a464c
permissions -rw-r--r--
INSTALLATION OF INDUCTIVE DEFINITIONS HOL/ex/MT.thy: now mentions dependence upon Sum.thy HOL/ex/Acc: new example, borrowed & adapted from ZF HOL/ex/Simult, ex/Term: updated refs to Sexp intr rules HOL/Sexp,List,LList,ex/Term: converted as follows node *set -> item Sexp -> sexp LList_corec -> <self> LList_ -> llist_ LList\> -> llist List_case -> <self> List_rec -> <self> List_ -> list_ List\> -> list Term_rec -> <self> Term_ -> term_ Term\> -> term

(*  Title: 	HOL/Ord.thy
    ID:         $Id$
    Author: 	Tobias Nipkow, Cambridge University Computer Laboratory
    Copyright   1993  University of Cambridge

The type class for ordered types
*)

Ord = HOL +
classes
  ord < term
consts
  "<", "<="     :: "['a::ord, 'a] => bool"              (infixl 50)
  mono		:: "['a::ord => 'b::ord] => bool"       (*monotonicity*)
  min,max	:: "['a::ord,'a] => 'a"

rules

mono_def  "mono(f)  == (!A B. A <= B --> f(A) <= f(B))"
min_def   "min(a,b) == if(a <= b, a, b)"
max_def   "max(a,b) == if(a <= b, b, a)"

end