(* Title: Substitutions/UTerm.thy
Author: Martin Coen, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
Simple term structure for unifiation.
Binary trees with leaves that are constants or variables.
*)
UTerm = Sexp +
types uterm 1
arities
uterm :: (term)term
consts
uterm :: "'a item set => 'a item set"
Rep_uterm :: "'a uterm => 'a item"
Abs_uterm :: "'a item => 'a uterm"
VAR :: "'a item => 'a item"
CONST :: "'a item => 'a item"
COMB :: "['a item, 'a item] => 'a item"
Var :: "'a => 'a uterm"
Const :: "'a => 'a uterm"
Comb :: "['a uterm, 'a uterm] => 'a uterm"
UTerm_rec :: "['a item, 'a item => 'b, 'a item => 'b,
['a item , 'a item, 'b, 'b]=>'b] => 'b"
uterm_rec :: "['a uterm, 'a => 'b, 'a => 'b,
['a uterm, 'a uterm,'b,'b]=>'b] => 'b"
defs
(*defining the concrete constructors*)
VAR_def "VAR(v) == In0(v)"
CONST_def "CONST(v) == In1(In0(v))"
COMB_def "COMB(t,u) == In1(In1(t $ u))"
inductive "uterm(A)"
intrs
VAR_I "v:A ==> VAR(v) : uterm(A)"
CONST_I "c:A ==> CONST(c) : uterm(A)"
COMB_I "[| M:uterm(A); N:uterm(A) |] ==> COMB(M,N) : uterm(A)"
rules
(*faking a type definition...*)
Rep_uterm "Rep_uterm(xs): uterm(range(Leaf))"
Rep_uterm_inverse "Abs_uterm(Rep_uterm(xs)) = xs"
Abs_uterm_inverse "M: uterm(range(Leaf)) ==> Rep_uterm(Abs_uterm(M)) = M"
defs
(*defining the abstract constructors*)
Var_def "Var(v) == Abs_uterm(VAR(Leaf(v)))"
Const_def "Const(c) == Abs_uterm(CONST(Leaf(c)))"
Comb_def "Comb(t,u) == Abs_uterm(COMB(Rep_uterm(t),Rep_uterm(u)))"
(*uterm recursion*)
UTerm_rec_def
"UTerm_rec(M,b,c,d) == wfrec(trancl(pred_sexp), M,
Case(%x g.b(x), Case(%y g. c(y), Split(%x y g. d(x,y,g(x),g(y))))))"
uterm_rec_def
"uterm_rec(t,b,c,d) ==
UTerm_rec(Rep_uterm(t), %x.b(Inv(Leaf,x)), %x.c(Inv(Leaf,x)),
%x y q r.d(Abs_uterm(x),Abs_uterm(y),q,r))"
end