diff -r 52771c21d9ca -r 14b9286ed036 HOL.ML --- a/HOL.ML Wed Apr 06 16:31:06 1994 +0200 +++ b/HOL.ML Tue Apr 19 10:50:00 1994 +0200 @@ -125,7 +125,8 @@ (** True **) -val TrueI = refl RS (True_def RS iffD2); +val TrueI = prove_goalw HOL.thy [True_def] "True" + (fn _ => [rtac refl 1]); val eqTrueI = prove_goal HOL.thy "P ==> P=True" (fn prems => [REPEAT(resolve_tac ([iffI,TrueI]@prems) 1)]); @@ -135,13 +136,11 @@ (** Universal quantifier **) -val allI = prove_goal HOL.thy "(!!x::'a. P(x)) ==> !x. P(x)" - (fn [asm] => [rtac (All_def RS ssubst) 1, rtac (asm RS (eqTrueI RS ext)) 1]); +val allI = prove_goalw HOL.thy [All_def] "(!!x::'a. P(x)) ==> !x. P(x)" + (fn prems => [resolve_tac (prems RL [eqTrueI RS ext]) 1]); -val spec = prove_goal HOL.thy "! x::'a.P(x) ==> P(x)" - (fn prems => - [ rtac eqTrueE 1, - resolve_tac (prems RL [All_def RS subst] RL [fun_cong]) 1 ]); +val spec = prove_goalw HOL.thy [All_def] "! x::'a.P(x) ==> P(x)" + (fn prems => [rtac eqTrueE 1, resolve_tac (prems RL [fun_cong]) 1]); val allE = prove_goal HOL.thy "[| !x.P(x); P(x) ==> R |] ==> R" (fn major::prems=> @@ -157,7 +156,7 @@ before quantifiers! **) val FalseE = prove_goal HOL.thy "False ==> P" - (fn prems => [rtac spec 1, rtac (False_def RS subst) 1, resolve_tac prems 1]); + (fn prems => [rtac spec 1, fold_tac [False_def], resolve_tac prems 1]); val False_neq_True = prove_goal HOL.thy "False=True ==> P" (fn [prem] => [rtac (prem RS eqTrueE RS FalseE) 1]); @@ -165,14 +164,11 @@ (** Negation **) -val notI = prove_goal HOL.thy "(P ==> False) ==> ~P" - (fn prems=> [rtac (not_def RS ssubst) 1, rtac impI 1, eresolve_tac prems 1]); +val notI = prove_goalw HOL.thy [not_def] "(P ==> False) ==> ~P" + (fn prems=> [rtac impI 1, eresolve_tac prems 1]); -val notE = prove_goal HOL.thy "[| ~P; P |] ==> R" - (fn prems => - [rtac (mp RS FalseE) 1, - resolve_tac prems 2, rtac (not_def RS subst) 1, - resolve_tac prems 1]); +val notE = prove_goalw HOL.thy [not_def] "[| ~P; P |] ==> R" + (fn prems => [rtac (mp RS FalseE) 1, REPEAT(resolve_tac prems 1)]); (** Implication **) @@ -194,33 +190,27 @@ (** Existential quantifier **) -val exI = prove_goal HOL.thy "P(x) ==> ? x::'a.P(x)" - (fn prems => - [rtac (selectI RS (Ex_def RS ssubst)) 1, - resolve_tac prems 1]); +val exI = prove_goalw HOL.thy [Ex_def] "P(x) ==> ? x::'a.P(x)" + (fn prems => [rtac selectI 1, resolve_tac prems 1]); -val exE = prove_goal HOL.thy "[| ? x::'a.P(x); !!x. P(x) ==> Q |] ==> Q" - (fn prems => - [resolve_tac prems 1, res_inst_tac [("P","%C.C(P)")] subst 1, - rtac Ex_def 1, resolve_tac prems 1]); +val exE = prove_goalw HOL.thy [Ex_def] + "[| ? x::'a.P(x); !!x. P(x) ==> Q |] ==> Q" + (fn prems => [REPEAT(resolve_tac prems 1)]); (** Conjunction **) -val conjI = prove_goal HOL.thy "[| P; Q |] ==> P&Q" +val conjI = prove_goalw HOL.thy [and_def] "[| P; Q |] ==> P&Q" (fn prems => - [ (rtac (and_def RS ssubst) 1), - (REPEAT (resolve_tac (prems@[allI,impI]) 1 ORELSE etac (mp RS mp) 1)) ]); + [REPEAT (resolve_tac (prems@[allI,impI]) 1 ORELSE etac (mp RS mp) 1)]); -val conjunct1 = prove_goal HOL.thy "[| P & Q |] ==> P" +val conjunct1 = prove_goalw HOL.thy [and_def] "[| P & Q |] ==> P" (fn prems => - [ (resolve_tac (prems RL [and_def RS subst] RL [spec] RL [mp]) 1), - (REPEAT(ares_tac [impI] 1)) ]); + [resolve_tac (prems RL [spec] RL [mp]) 1, REPEAT(ares_tac [impI] 1)]); -val conjunct2 = prove_goal HOL.thy "[| P & Q |] ==> Q" +val conjunct2 = prove_goalw HOL.thy [and_def] "[| P & Q |] ==> Q" (fn prems => - [ (resolve_tac (prems RL [and_def RS subst] RL [spec] RL [mp]) 1), - (REPEAT(ares_tac [impI] 1)) ]); + [resolve_tac (prems RL [spec] RL [mp]) 1, REPEAT(ares_tac [impI] 1)]); val conjE = prove_goal HOL.thy "[| P&Q; [| P; Q |] ==> R |] ==> R" (fn prems => @@ -229,19 +219,15 @@ (** Disjunction *) -val disjI1 = prove_goal HOL.thy "P ==> P|Q" - (fn [prem] => - [rtac (or_def RS ssubst) 1, - REPEAT(ares_tac [allI,impI, prem RSN (2,mp)] 1)]); +val disjI1 = prove_goalw HOL.thy [or_def] "P ==> P|Q" + (fn [prem] => [REPEAT(ares_tac [allI,impI, prem RSN (2,mp)] 1)]); -val disjI2 = prove_goal HOL.thy "Q ==> P|Q" - (fn [prem] => - [rtac (or_def RS ssubst) 1, - REPEAT(ares_tac [allI,impI, prem RSN (2,mp)] 1)]); +val disjI2 = prove_goalw HOL.thy [or_def] "Q ==> P|Q" + (fn [prem] => [REPEAT(ares_tac [allI,impI, prem RSN (2,mp)] 1)]); -val disjE = prove_goal HOL.thy "[| P | Q; P ==> R; Q ==> R |] ==> R" +val disjE = prove_goalw HOL.thy [or_def] "[| P | Q; P ==> R; Q ==> R |] ==> R" (fn [a1,a2,a3] => - [rtac (mp RS mp) 1, rtac spec 1, rtac (or_def RS subst) 1, rtac a1 1, + [rtac (mp RS mp) 1, rtac spec 1, rtac a1 1, rtac (a2 RS impI) 1, atac 1, rtac (a3 RS impI) 1, atac 1]); (** CCONTR -- classical logic **) @@ -249,14 +235,18 @@ val ccontr = prove_goal HOL.thy "(~P ==> False) ==> P" (fn prems => [rtac (True_or_False RS (disjE RS eqTrueE)) 1, atac 1, - rtac spec 1, rtac (False_def RS subst) 1, resolve_tac prems 1, - rtac ssubst 1, atac 1, rtac (not_def RS ssubst) 1, + rtac spec 1, fold_tac [False_def], resolve_tac prems 1, + rtac ssubst 1, atac 1, rewtac not_def, REPEAT (ares_tac [impI] 1) ]); -val classical = prove_goal HOL.thy "(~P ==> P) ==> P" +val ccontr = prove_goalw HOL.thy [not_def] "(~P ==> False) ==> P" (fn prems => - [rtac ccontr 1, - REPEAT (ares_tac (prems@[notE]) 1)]); + [rtac (True_or_False RS (disjE RS eqTrueE)) 1, atac 1, + rtac spec 1, fold_tac [False_def], resolve_tac prems 1, + rtac ssubst 1, atac 1, REPEAT (ares_tac [impI] 1) ]); + +val classical = prove_goal HOL.thy "(~P ==> P) ==> P" + (fn prems => [rtac ccontr 1, REPEAT (ares_tac (prems@[notE]) 1)]); (*Double negation law*) @@ -267,17 +257,15 @@ (** Unique existence **) -val ex1I = prove_goal HOL.thy +val ex1I = prove_goalw HOL.thy [Ex1_def] "[| P(a); !!x. P(x) ==> x=a |] ==> ?! x. P(x)" (fn prems => - [ (rtac (Ex1_def RS ssubst) 1), - (REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)) ]); + [REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)]); -val ex1E = prove_goal HOL.thy +val ex1E = prove_goalw HOL.thy [Ex1_def] "[| ?! x.P(x); !!x. [| P(x); ! y. P(y) --> y=x |] ==> R |] ==> R" (fn major::prems => - [ (resolve_tac ([major] RL [Ex1_def RS subst] RL [exE]) 1), - (REPEAT (etac conjE 1 ORELSE ares_tac prems 1)) ]); + [rtac (major RS exE) 1, REPEAT (etac conjE 1 ORELSE ares_tac prems 1)]); (** Select: Hilbert's Epsilon-operator **)